Suscribirse a canal de noticias Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Actualizado: hace 1 hora 47 segs

Einstein y Marcel Grossmann

Mar, 2022/04/12 - 11:59

Marcel Grossmann fue, además de compañero de clase en la universidad, un amigo muy cercano a Albert Einstein hasta su muerte en 1936, a pesar de las marcadas diferencias en personalidad. En la universidad, Grossmann era formal y respetuoso mientras que Einstein era impredecible y rebelde. Él mismo un científico consumado, presidente de la Sociedad Matemática Suiza en 1916, Grossmann trabajó con Einstein en las teorías de la gravitación de este, publicando juntos en 1913.

Marcel Grossman. Fuente: ETH Zürich

La principal colaboración entre Einstein y Marcel Grossmann se conoce como el artículo Einstein-Grossmann, un paso en la dirección de lo que sería la teoría general de la relatividad, publicado en 1913. La contribución de Grossmann estuvo en la base matemática para apoyar las tesis de Einstein (Grossmann era un geómetra experto, que dominaba la geometría analítica y el cáculo tensorial). Grossmann fue el primero de una serie de colaboradores que tenían un dominio de las matemáticas muy superior al que tenía el propio Einstein. El artículo no ha pasado a la historia por ser una gran aportación: aunque fue un paso importante en el camino hacia la teoría final, el artículo Einstein-Grossmann está salpicado de razonamientos no demasiado consistentes.

Pero este es solo un ejemplo de toda una vida de ayuda a Einstein por parte de Grossmann. Grossmann le dejaba a Einstein usar sus metódicos apuntes de clase, y éste sacó tanto provecho de ellos a lo largo de todos sus años universitarios que no pudo menos que dedicar su tesis doctoral a su amigo.

Tras la graduación Einstein no tuvo ningún éxito en la búsqueda de empleo como profesor; incluso le llegó a pedir consejo a Grossmann sobre si debía ocultar sus orígenes judíos (Grossmann también lo era). Al final, Grossmann tuvo que acudir al rescate. Convenció a su padre (un industrial muy bien relacionado) para que hablase con Friedrich Haller, el director de la Oficina de Patentes Suiza, para que este contratase a Einstein. Después de un año en paro, un enchufe permitió a Einstein conseguir su primer trabajo. Un año después Grossmann se unía a su amigo en la oficina de patentes para, poco más tarde, abandonarla para irse de profesor al Politécnico de Zúrich.

Por su parte, tras su annus mirabilis, Einstein fue aceptando trabajos que no se ajustaban a sus necesidades, culminando con el puesto que se le ofreció para enseñar en Praga. Einstein odiaba la ciudad por lo que, cuando Grossman le ofreció un puesto de profesor en el Politécnico de Zúrich, donde ya ocupaba puestos de gestión, Einstein se apresuró a aceptarlo. Pero la búsqueda del puesto perfecto continuó, y solo un año después Einstein dejaba Zúrich, a pesar lo que eso significaba para su gran amigo, para hacerse cargo de un puesto en Berlín.

La marcha de Einstein no afectó demasiado ni a su amistad ni a su colaboración. Sus teorías fueron publicadas en 1913, y Grossmann continuó siendo la mente matemática con la que Einstein prefería contrastar sus ideas. Es a través de las cartas entre ambos como conocemos en qué estaba trabajando Einstein en un momento dado, ya que Einstein siempre mantuvo a Grossmann al corriente de sus investigaciones y Grossmann respondía con críticas constructivas (de hecho, parece demostrado que fue Grossmann el que sugirió el uso del cálculo tensorial para la relatividad general). Así, por ejemplo, en 1901, Einstein estaba investigando la teoría cinética de los gases, el movimiento de la materia con respecto al éter o el concepto de una fuerza molecular universal.

Tristemente, sin embargo, la enfermedad hizo su aparición en la vida de los dos amigos. Grossmann desarrolló esclerosis múltiple en los años 20. El hombre que era el apoyo de Einstein, desde pasarle los apuntes de las clases de matemáticas para que él pudiese asistir a otras más interesantes, hasta cuidar de su hijo Eduard cuando fue hospitalizado con síntomas de esquizofrenia, pasando por conseguirle una entrevista de trabajo en más de una ocasión, murió en 1936.

Einstein escribió a la mujer de Grossmann para expresarle sus sentimientos: “Recuerdo nuestros días de estudiante. Él, el estudiante irreprochable, yo mismo, desordenado y soñador. Él, en buenos términos con los profesores y entendiéndolo todo, yo un paria, descontento y poco amado. Pero éramos buenos amigos y nuestras conversaciones delante de un café helado en el Metropole cada pocas semanas están entre mis recuerdos más felices”.

A pesar de la temprana muerte de su amigo, Einstein le guardó un cariño inmenso hasta el final de su vida. En 1955, poco antes de morir, Einstein redactó un texto autobiográfico, algo que odiaba hacer, pero que escribió, tal y como aparece en la dedicatoria, como homenaje a su amigo: “la necesidad de expresar al menos una vez en mi vida mi gratitud a Marcel Grossmann me dio el valor para escribir esto”.

Como homenaje a la contribución de Marcel Grossmann al desarrollo de la teoría, la comunidad de relativistas (ICRANet) organiza cada tres años los encuentros Marcel Grossmann y concede los premios Marcel Grossmann.

Referencia:

Einstein, A. & Grossmann, M. (1913). Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation Zeitschrift für Mathematik und Physik, 62, 225-265

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Una versión anterior de este artículo se publicó en Experientia Docet el 30 de agosto de 2009.

El artículo Einstein y Marcel Grossmann se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Todo cabe en el encéfalo

Lun, 2022/04/11 - 11:59
Foto: Richard Lee / Unsplash

Hasta los perdigones. Por lo menos es una de las conclusiones del estudio de Anders Pape Moller y Johannes Erritzoe, de las universidades de París-Saclay y de Christianfeld, en Dinamarca, sobre la caza de aves en este país nórdico. Revisan las aves disecadas en los talleres de taxidermistas del entorno de Christianfeld entre los años 1960 y 2015. Toman sus datos e incluyen el peso del encéfalo y la causa de la muerte. De un total de 3781 ejemplares examinados, un 7%, o sea, 299, murieron por disparos. El análisis de los datos lleva a los autores a confirmar que les disparan más a los ejemplares de más peso, lo que es coherente ya que se trata de animales cazados, y los más grandes son los más codiciados pues se buscan por su tamaño y, también, son los que más blanco ofrecen a los cazadores. Pero igualmente detectan que se dispara más a los animales con el encéfalo más pequeño. La probabilidad de recibir un tiro aumenta hasta 30 veces con el encéfalo de menor tamaño. No conozco un estudio similar para la especie humana.

Por cierto y entre paréntesis, en una publicación muy reciente, los mismos autores encuentran un resultado similar que relaciona el tamaño del encéfalo de las aves con los accidentes de tráfico: con el encéfalo más pequeño hay una mayor probabilidad de ser atropellado. Quizá las aves con el encéfalo más grande se adaptan mejor a conductas que les permiten evitar los accidentes.

También influye el tamaño del encéfalo de las aves en su muerte por mal tiempo. Por lo menos en algunas especies como, por ejemplo, la golondrina risquera, Petrochelidon pyrrhonata, que se encuentra en América. Gigi Wagnon y Charles Brown, de la Universidad de Tulsa, estudiaron esta especie en varias colonias de Nebraska desde 1982 a 2018. Recogieron los ejemplares muertos por diversas causas incluyendo varias olas de frío y lluvia. Con ese clima no hay insectos que son el componente principal de la dieta de las golondrinas risqueras.

En 1996, con una ola de frío extremo, murió el 53% de la población en un periodo de seis días. En total, los autores estudiaron el encéfalo de algo más de 1000 ejemplares. La conclusión fue que las golondrinas que morían de hambre durante la ola de frío tenían el encéfalo más pequeño que las que morían por otras causas.

Miedo, mucho miedo

No solo los perdigones, también el miedo se esconde en el encéfalo. Nos lo explicó María José Moreno hace unos meses en Cuaderno de Cultura Científica, según estudios de la Universidad Politécnica de Madrid y de la Universidad Autónoma de Barcelona. El miedo está, es un decir, en la amígdala, en el centro del encéfalo, una en cada hemisferio. El miedo es una emoción seleccionada en la evolución ya que ayuda a la supervivencia al detectar peligros y provocar respuestas rápidas y precisas para evitarlos.

En rojo posición de los cuerpos amigdalinos en el encéfalo humano. Fuente: Anatomography / Life Science Databases (LSDB) / Wikimedia Commons

Es la amígdala la que procesa esa respuesta rápida a las posibles amenazas que nos llegan del entorno a través de los sentidos: la imagen que nos parece una serpiente venenosa; el estruendo que podría ser una piedra o un árbol que cae y nos puede herir y, en la actualidad, hemos aprendido a evitar el ruido que provoca el motor de un vehículo, aunque todavía no sabemos detectar a los vehículos eléctricos y silenciosos; en un bosque húmedo y sombrío, esa criatura misteriosa que se vislumbra entre las hojas y, quizá, es un depredador o, quien sabe, si el Bigfoot, el Yeti o Basajaun. En el cine es el temido plano dorsal o de espalda. El protagonista se mueve por un decorado oscuro, incluso tenebroso. Y la cámara le sigue, muestra lo que tiene delante, pero no conoce lo que está a su espalda. Seguro que es algo peligroso y el miedo llega al espectador que, sin remedio, espera el susto, quizá una mano que se apoya en hombro del protagonista.

También provoca una respuesta rápida ver un rostro que refleja miedo, lo que nos avisa de que algo peligroso está ocurriendo. En este caso, la respuesta de la amígdala puede darse en 74 milisegundos. Y la respuesta se da aunque la imagen del rostro con miedo sea algo borrosa.

El funcionamiento habitual es que, poco después, en unos milisegundos, la imagen se enfoca y lo que vemos nos dará una información más precisa. Pero, para entonces, la respuesta primaria, rápida y dirigida por la amígdala y el miedo ya se habrá producido y, si era un peligro, ha dado la oportunidad de evitarlo.

Es en la amígdala donde almacenamos recuerdos que tienen que ver con el miedo. Allí están las imágenes de serpientes, arañas o cucarachas. En ratones se han identificado algunas neuronas, llamadas Tac2, que almacenan estos miedos. En un experimento de Raúl Andero, de la Universidad Autónoma de Barcelona, con ratones se ha conseguido que estas neuronas Tac2 sean sensibles a la luz. Cuando se iluminan, se activan y el ratón recuerda aquello que le asustó y siente miedo.

Placebo, empatía, racismo

Pero, además del miedo, en el encéfalo está el placebo, es decir, la respuesta positiva, sobre todo contra el dolor, a un tratamiento que, en realidad, no existe. El equipo de Pascal Tétreault, de la Universidad del Noroeste en Chicago, trabaja con voluntarios que tienen osteoartritis en las rodillas, con dolores continuos y tratamiento analgésico habitual. Les dan, a un grupo de voluntarios, su medicación y, a un segundo grupo, unas píldoras que son placebo. A la vez escanean su encéfalo para conocer que se activa en caso de responder al placebo.

En los experimentos, la mitad de los enfermos responden al placebo y la otra mitad no siente un alivio del dolor. En el encéfalo es el giro frontal medio del cerebro, situado a la altura de la frente en el hemisferio derecho, la zona que se activa y mejor identifica a los pacientes que responden al placebo. Es notable que el medicamento contra el dolor provoca en la mitad de los pacientes un aumento la sensación de placebo, según la respuesta cerebral que se detecta, y, a la otra mitad, les disminuye la sensación de dolor por acción del medicamento.

Y todavía más conductas caben en el giro frontal medio como, por ejemplo, la empatía. Giovanni Novembre y su grupo, de la Escuela Superior Internacional de Estudios Avanzados de Trieste, han encontrado, con imágenes de escáner del encéfalo de voluntarios, que la respuesta a la exclusión social, a lo que denominan “dolor social”, es decir, la empatía ante lo que el otro siente, está incluida en la misma zona del cerebro que responde al dolor físico y que, si se observa en otros, también despierta empatía. Por tanto, tanto el dolor físico como el “dolor social” provocan empatía y disparan las mismas zonas del cerebro. Es una respuesta que, desde la selección evolutiva, sentir el dolor del otro tiene gran importancia para mantener la cohesión del grupo.

En trabajo reciente, Yoni Ashar y sus colegas, de la Universidad de Colorado, han estudiado las imágenes del giro frontal medio de voluntarios cuando se les provoca empatía para ayudar y empatía para evitar, con la aparición de disgusto y, quizá, de miedo. La empatía para ayudar, concepto habitual en nuestros sentimientos, se localiza en el nucleus accumbens, mientras que la empatía para evitar es cuestión de la corteza relacionada con la información sensorial y con el sistema motor. Es evidente que la empatía de disgusto lleva al movimiento y la huida.

Pero no solo la empatía, también el racismo encuentra acomodo en el encéfalo. Además, se localiza en la amígdala. En un experimento publicado en el 2000 por Allen Hart y su equipo, del Colegio Amherst, en Estados Unidos, se detectó que, cuando voluntarios blancos veían rostros de blancos y de negros, aparecía en la amígdala una respuesta más fuerte ante la imagen de un negro. La potencia de la respuesta se relaciona con el conservadurismo político y el apoyo a la diferencia entre razas de cada voluntario.

Una respuesta semejante han encontrado Kelly Correa y sus colegas, de la Universidad de Illinois en Chicago, cuando analizaron la reacción ante hispanos y blancos. Sin embargo, también encuentran que la sensación de amenaza ante los hispanos depende en parte de experiencias previas de los participantes.

Y, por hoy ya es suficiente, ya tenemos el encéfalo lleno, muy lleno, repleto.

Referencias

Andero, R. et al. 2016. Amygdala-dependent molecular mechanisms of the Tac2 pathway in fear learning. Neuropsychopharmacology doi: 10.1038/npp.2016.77

Ashar, Y.K. et al. 2017. Empathic care and distress: Predictive brain markers and dissociable brain systems. Neuron doi: 10.1016/j.neuron.2017.05.014

Correa, K.A. et al. 2022. Ethnic differences in behavioral and physiological indicators of sensitivity to threat. Journal of Anxiety Disorders 85: 102508.

Hart, A.J. et al. 2000. Differential response in the human amygdala to racial outgroup vs. ingroup face stimuli. NeuroReport 11: 2351-2355.

Karaki, S. 2017. Inside the racist brain. Scientificus Europaeus 2 March.

Méndez Bertolo, C. et al. 2016. A fast pathway for fear in human amygdala. Nature Neuroscience 19: 1041-1049.

Moller, A.P. & J. Erritzoe. 2016. Brain size and the risk of getting shot. Biology Letters 12: 20160647

Moller, A.P. & J. Erritzoe. 2017. Brain size in birds is related to traffic accidents. Royal Society Open Science DOI: 10.1098/rsos.161040

Moreno, M.J. 2016. El miedo se esconde en el cerebro. Cuaderno de Cultura Científica octubre 20.

Novembre, G. et al. 2015. Empathy for social exclusion involves the sensory-discriminative component of pain: a within-subject fMRI study. SCAN 10: 153-164.

Tétreault, P. et al. 2016. Brain connectivity predicts placebo response across chronic pain clinical trials. PLOS Biology 14: e1002570

Wagnon, G.S. & C.R. Brown. 2020. Smaller brained cliff swallows are more likely to die during harsh weather. Biology Letters 16: 20200264.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Todo cabe en el encéfalo se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Los organoides: órganos humanos en miniatura

Dom, 2022/04/10 - 11:59

Isidoro Martínez González, Isabel Liste y Salvador Resino García

El uso de organoides ayuda a entender mejor cómo funciona la biología del ser humano, pero también cómo se producen y desarrollan las enfermedades y ensayar fármacos o terapias frente a ellas.

organoidesColonia de células madre pluripotentes inducidas humanas. A partir de ellas se forman organoides. Fuente: National Eye Institute/NIH – Wikimedia Commons

 

Para entender cómo funciona el cuerpo humano, cómo se producen las enfermedades y cómo se pueden tratar, los científicos necesitamos hacer experimentos. Por razones obvias, la gran mayoría de esos experimentos no se pueden hacer en los seres humanos.

Para resolver este problema, la ciencia usa lo que se llaman “modelos”, en los cuales sí se pueden hacer experimentos. Por ejemplo, dos modelos clásicos utilizados en biomedicina son las líneas celulares y los animales de experimentación.

A diferencia de las células normales de un organismo, las líneas celulares tienen la capacidad de crecer indefinidamente in vitro, es decir pueden “cultivarse” en un laboratorio. Estas células, también llamadas “inmortales”, han sido obtenidas en su mayoría a partir de tumores. Aunque funcionan en muchos aspectos como las células no tumorales, en otros muchos se comportan de forma diferente, y esto es una limitación muy importante para determinados estudios.

Los animales de experimentación (los más utilizados son los ratones) presentan problemas similares. Aunque se trata de organismos vivos en los que se pueden hacer experimentos más complejos, la biología de los animales de experimentación difiere también en muchos aspectos de la biología humana. Además, el uso de animales presenta problemas éticos.

En los últimos años se han empezado a desarrollar modelos de experimentación que solucionan gran parte de los inconvenientes de los modelos basados en líneas celulares o animales de experimentación. Los más atractivos son los organoides, sobre los cuales se han conseguido avances muy importantes en la última década.

Qué son y cómo se producen los organoides

Un organoide es una versión reducida y simplificada de un órgano que se fabrica en el laboratorio mediante métodos de cultivo específicos. Están formados por muchas células diferentes que se organizan en estructuras tridimensionales de tamaño reducido (de micrómetros a centímetros), similares a los tejidos u órganos vivos correspondientes (ej. pulmón, hígado, etc). Es decir, los organoides pueden llegar a tener características estructurales y funcionales de los órganos humanos.

Se producen a partir de una o unas pocas células denominadas “células madre” o “células troncales”. Estas células se caracterizan por ser pluripotentes, es decir, además de crecer in vitro, tienen la capacidad de “diferenciarse”, esto es, de generar células especializadas de diferentes tipos, similares a las que forman los órganos verdaderos.

Las células troncales pluripotentes son fundamentalmente de dos tipos:

  1. Células troncales embrionarias. Se obtienen justo después de la fecundación del óvulo.
  2. Células troncales pluripotentes inducidas. Se obtienen a partir de células de un tejido concreto (la piel, por ejemplo) mediante determinados tratamientos. Una vez que las células adquieren la capacidad de ser pluripotentes, se pueden volver a diferenciar a células especializadas de distintos órganos mediante cultivo con diferentes nutrientes y factores de crecimiento. Dependiendo de la composición de esos nutrientes y de los factores de crecimiento, las células se diferenciarán a un órgano u otro.

Existen también las “células troncales adultas”, que se pueden obtener a partir de tejidos con capacidad regenerativa (el hígado, por ejemplo). Sin embargo, estas células tienen un limitado potencial de diferenciación y dan lugar a organoides menos complejos.

La importancia en el estudio de enfermedades

Hasta el momento, los investigadores han conseguido generar organoides de hígado, cerebro, retina, oído interno, pulmón, intestino, próstata, páncreas y ovario, entre otros.

Los organoides tienen importantes ventajas:

  1. Se pueden producir en un laboratorio de forma controlada y pueden ser manipulados con relativa facilidad.
  2. Constan de más de un tipo de célula, por lo que son más complejos y reproducen mejor el ambiente y lo que realmente ocurre en el organismo vivo.
  3. Son de origen humano.
  4. Son seguros y asequibles.

Por todo ello, el uso de organoides ayuda a entender mejor cómo funciona la biología del ser humano, pero también cómo se producen y desarrollan las enfermedades (cáncer, enfermedades genéticas, enfermedades infecciosas, etc.) y ensayar fármacos o terapias frente a ellas. También pueden ser usados en trasplantes y medicina regenerativa.

Además, permiten reducir el uso de animales de experimentación.

No obstante, los organoides también tienen importantes limitaciones, sobre todo en estudios que implican la participación de diferentes órganos y su coordinación. Por ejemplo, carecen de sistema vascular o de intercambio de gases. Además, suelen ser inmaduros y tienen una vida limitada.

Todos estos problemas están siendo abordados por científicos e ingenieros y, en algunos casos, parecen haberse encontrado soluciones imaginativas. Por ejemplo, se han podido generar redes vasculares usando impresoras 3D.

Esquema de creación de tejidos con hidrogel termorresistente y generación de biotintas que son utilizadas para la impresión de parches vascularizados y estructuras celulares complejas. Fuente: 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts_, Advanced Science, 15 April 2019.

En definitiva, aunque los organoides tienen algunas limitaciones, la intensa investigación que se está llevando a cabo en este campo y los continuos progresos harán que se extienda su aplicación en la clínica y que el conocimiento que se adquiera con su uso resulte cada vez más valioso para entender la biología del ser humano y tratar enfermedades.The Conversation

Sobre los autores: Isidoro Martínez González, Científico Titular; Isabel Liste, Investigadora principal y Salvador Resino García, Investigador Científico de OPIs, Instituto de Salud Carlos III

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Los organoides: órganos humanos en miniatura se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Día de Pi con BCAM Naukas 2022: Adolfo Quirós – El número pi y la muralla de Cartago

Sáb, 2022/04/09 - 11:59

https://culturacientifica.com/2021/12/01/paseando-entre-arboles-de-pitagoras/

La forma en la que se escribe el 14 de marzo en inglés y euskera coincide con los tres primeros dígitos de la famosa constante matemática: 3-14 martxoaren 14 en euskara / 3-14 March, 14th en inglés. En los últimos años, la conmemoración del Día de Pi se ha ido extendiendo, hasta tal punto que el 26 de noviembre de 2019 la UNESCO proclamó el 14 de marzo Día Internacional de las Matemáticas.

Un año más, el Basque Center for applied Mathematics-BCAM y la Cátedra de Cultura Científica de la UPV/EHU se han suamdo a la celebración, organizando la tercera edición del evento BCAM-NAUKAS, que se desarrolló a lo largo del 14 de marzo en el Bizkaia Aretoa de la UPV/EHU.

Los reyes y las reinas se enfrentan a problemas matemáticos muy interesante. Tomemos el caso de Elisa, llamada Dido, la errante. Tiene una cuerda hecha con tiras de una piel de buey y su problema es qué forma tiene que adoptar la curva que forme con esa cuerda para maximizar el área encerrada entre la curva y la línea de costa que asumimos recta Efectivamente, estamos hablando de la fundación de Birsa, la «ciudad nueva», Cartago en el idioma local. Adolfo Quirós, profesor titular de la Universidad Autónoma de Madrid, nos plantea el problema de Dido, la solución matemática y la que encontró Dido para construir las murallas.

 



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Día de Pi con BCAM Naukas 2022: Adolfo Quirós – El número pi y la muralla de Cartago se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Trigos de alto rendimiento capaces de inhibir la nitrificación del suelo

Vie, 2022/04/08 - 11:59

La hibridación de variedades comerciales consigue trigos de alto rendimiento capaces de inhibir la nitrificación del suelo. El estudio ha merecido el premio Cozzarelli 2021.

trigos nitrificaciónFoto: Pixabay

El trigo es uno de los pilares de la alimentación mundial. Alrededor de 250 millones de hectáreas se dedican al cultivo de este cereal, cuya demanda y producción están en aumento. Por otra parte es impensable conseguir altas producciones con calidad de grano sin la aplicación de fertilizantes, especialmente los nitrogenados. La combinación de ambos factores da como resultado que el trigo consuma la quinta parte de los fertilizantes nitrogenados producidos en el mundo.

El nitrógeno es aplicado al cultivo en forma de amonio o nitrato, sin embargo, no todo el que se aporta es absorbido por los cultivos. Por un lado, el amonio se convierte rápidamente en nitrato por el proceso de nitrificación del suelo, y al ser el nitrato muy soluble en agua, llega a las aguas subterráneas y ríos, y puede producir eutrofización (la pérdida de calidad del agua provocada por el exceso de nutrientes que hace que aumente tanto el número de organismos que terminan agotando el oxígeno disuelto en el agua). Por otro lado, parte del nitrógeno se puede emitir a la atmósfera en forma de óxido nitroso, un gas con efecto invernadero mucho más potente que el CO2.

Nos encontramos con que el continuo crecimiento de la población mundial hace necesaria una agricultura altamente productiva que, inevitablemente, precisa de fertilizantes, pero ello debe convivir con el hecho de que es imprescindible mitigar los efectos dañinos para el medioambiente y el cambio climático producidos por la agricultura.

Una de las soluciones pasa por optimizar la toma de los fertilizantes por parte de las plantas. Para ello se han empleado diversas técnicas, encaminadas a que la planta utilice más eficientemente el nitrógeno: por ejemplo, utilizar fertilizantes de liberación lenta o inhibidores de síntesis química que ralenticen la conversión del amonio a nitrato en el suelo. Otra más interesante sería usar la capacidad que tienen algunas especies vegetales para producir y secretar por las raíces moléculas que inhiben la oxidación del amonio a nitrato en el suelo. Con ello se consigue mantener durante más tiempo el nitrógeno en el suelo, lo que permite que las plantas lo tomen de manera más eficiente. El problema es que muchas de estas especies que producen inhibidores biológicos de la nitrificación (IBN) son poco productivas agronómicamente.

Trigos de alto rendimiento capaces de inhibir la nitrificación del suelo

Un estudio reciente, en el que colaboran grupos de investigación de la UPV-EHU, del CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo, de México), del JIRCAS (Japan International Research Center for Agricultural Sciences) y de la Universidad Nihon (Japón), ha caracterizado el segmento cromosómico que confiere una alta capacidad de liberación de IBN en la planta silvestre Leymus racemosus. Esta especie está emparentada evolutivamente con el trigo, y, a través de cruces con diversos trigos de alto rendimiento capaces de producir 10.000 kg por hectárea, los investigadores consiguieron transferir la capacidad de liberación de moléculas IBN a estas variedades.

“El proceso permite, al mismo tiempo, producir más trigo y, además, reducir las emisiones de gases de efecto invernadero y la contaminación de las aguas continentales causada por la lixiviación del nitrato” afirma Carmen González Murua, catedrática de fisiología vegetal, investigadora principal del grupo NUMAPS de la UPV/EHU.

Este trabajo ha merecido el Premio Cozzarelli, en la categoría de Biología aplicada, Agricultura y Ciencias ambientales. El galardón se concede anualmente por el Consejo Editorial de Proceedings of the National Academy of Sciences (PNAS).

Referencia:

Guntur V. Subbarao, Masahiro Kishii, Adrian Bozal-Leorri, Ivan Ortiz-Monasterio, Xiang Gao, Maria Itria Ibba, Hannes Karwat, M. B. Gonzalez-Moro, Carmen Gonzalez-Murua, Tadashi Yoshihashi, Satoshi Tobita, Victor Kommerell, Hans-Joachim Braun, and Masa Iwanaga (2021) Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution PNAS, doi: 10.1073/pnas.2106595118

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Trigos de alto rendimiento capaces de inhibir la nitrificación del suelo se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Vida y muerte de una estrella

Jue, 2022/04/07 - 11:59
  muerte de una estrellaUna viñeta de Quino.

Tras calcular la distancia que le separa de los países que rodean su isla, nuestro náufrago se prepara para emigrar. Le gustaría nadar hacia algún país donde se invierta en ciencia e investigación; un país con futuro, vaya. Por suerte, las facturas de su playa le han dado una pista sobre la base de la economía de cada país y el grado de desarrollo en que se encuentra, si le espera un largo porvenir o si se avecina una temible crisis.

Algo parecido es lo que nos cuenta la composición química de una estrella. Podemos saber en qué momento de su ciclo vital se encuentra si averiguamos cuál es su “combustible”, aquello que mantiene su energía. Pero vayamos por partes. ¿A qué nos referimos con “combustible” en este caso?

Bien, a grandes rasgos, una estrella es un inmenso reactor nuclear, que fusiona distintos átomos y libera la energía sobrante en forma de radiación. La mayoría de ellas nacen en el seno de una nube molecular, una región del espacio donde abunda el hidrógeno en su forma molecular. Este es el “combustible” primario de todas las estrellas, ya que los átomos de hidrógeno pueden fusionarse y formar helio más un exceso de energía. Por ese motivo, estas nubes de gas y polvo espacial se conocen también como “viveros de estrellas”, un precioso nombre que nos invita a imaginar el arte de la jardinería espacial. En ocasiones, atraída por la gravedad, la nube puede comprimirse hasta colapsar bajo su propio peso y formar una protoestrella.

En este punto, si la masa es menor que 0,08 masas solares (0.08 M☉), la protoestrella no se comprimirá lo suficiente y no alcanzará la temperatura necesaria para empezar a fusionar el hidrógeno. Terminará convertida en una enana marrón de poca luminosidad y se irá apagando y enfriando poco a poco con el tiempo. En cambio, las protoestrellas que superan este umbral de masa y temperatura (unos 10 millones Kelvin) empiezan a fusionar hidrógeno en su núcleo. Pasan entonces a formar parte de la secuencia principal, aquella rama especialmente visible del diagrama Hertzsprung-Russell (el mapa de historias de las estrellas). La presión de radiación causada por las reacciones de fusión y la propia gravedad de la estrella darán lugar a un equilibrio de fuerzas que definirá su tamaño y la situará en un punto determinado de dicha rama1.

muerte de una estrellaDiagrama de Hertzsprung-Russell. Fuente: Wikimedia Commons

Las estrellas pasan la mayor parte de su vida sobre la secuencia principal, mientras queman el hidrógeno de su núcleo. Estas reacciones de fusión, van dando lugar poco a poco a otros elementos más pesados, que pueden convertirse a su vez en combustible nuclear. Primero aparece el helio, luego el berilio, el carbono, el oxígeno… hasta que finalmente se forman átomos de hierro, los más pesados. Una estrella alcanza la vejez cuando se agotan las fuentes de hidrógeno de su núcleo. Es en ese momento cuando se separa de la secuencia principal y busca otro rincón del mapa donde pasar su jubilación. Pero la dirección de este desplazamiento, su velocidad y su destino dependen de la masa inicial de la estrella.

La muerte de las estrellas depende de su masa

Si la estrella tiene una masa baja o intermedia (menor que 9 M☉), no alcanzará la temperatura suficiente como para quemar el helio que se forme en su núcleo de manera inmediata. Tras agotar su núcleo, seguirá quemando hidrógeno en capas cada vez más alejadas del centro y al hacerlo se expandirá hasta formar una gigante roja. Se piensa que este es el futuro que le espera a nuestro Sol. Dentro de unos pocos miles de millones de años, engullirá a Mercurio, a Venus y quizás también a la Tierra.

Tras esta inmensa expansión, es posible que la gigante empiece a devorar también el helio de su núcleo. Esta fase recibe el nombre de apelotonamiento rojo debido a la concentración de este tipo de estrellas en el diagrama H-R. Una vez el helio del núcleo se agota, la estrella vuelve a consumirse en capas cada vez más externas. En el proceso se expande, y se enfría (se vuelve cada vez más gigante y más roja), recorriendo el diagrama hacia arriba y hacia la derecha. La estrella alcanza su mayor tamaño justo antes de extinguirse. Hasta que, finalmente, expulsa sus capas externas (las menos atraídas por la fuerza gravitatoria) y queda convertida en una nebulosa planetaria con una enana blanca en su centro.

Las estrellas un poco más grandes (entre 9 y 30 M☉) tienen un origen similar. También ellas nacen en viveros y pasan su juventud consumiendo el hidrógeno de su núcleo. Pero cuando este combustible se agota, pueden seguir quemando helio sin problema. En el proceso, su luminosidad no varía, pero debido a la pérdida de masa, su temperatura (su color) disminuye rápidamente y se desplazan a la derecha en el diagrama. De azules pasan a blancas, luego amarillas, hasta que se convierten en supergigantes rojas, las estrellas más grandes del universo. Cuando agotan todo su combustible, el colapso gravitatorio de su enorme masa genera una supernova, con un remanente estelar en forma de estrella de neutrones.

Las estrellas más masivas de todas (mayor a 30 M☉) tienen una historia similar, salvo por un detalle, y es que la estrella pierde masa a un ritmo tan elevado que nunca llega a convertirse en una supergigante roja. Una vez consume todo su combustible, la estrella colapsa y da lugar a una supernova y a un agujero negro como remanente estelar.

Son historias fascinantes de objetos remotos, a distancias inabarcables incluso para nuestra imaginación. Lo fascinante es que hoy podamos contarlas con solo mirar la luz de las estrellas. Gracias a siglo y medio de investigación, hemos aprendido descifrar su mensaje. Hemos atravesado por fin la superficie de la bóveda celeste, y al otro lado hemos encontrado un profundo relato formado de tiempo, hidrógeno y gravedad.

muerte de una estrellaGrabado Flammarion. Fuente: Wikimedia CommonsNota:

1Este equilibrio de fuerzas era el que hacía oscilar el tamaño de las cefeidas, la regla de medir universos que ayudó a encontrar Henrietta Leavitt.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo Vida y muerte de una estrella se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Los embaldosados de Truchet y el puzle del diamante

Mié, 2022/04/06 - 11:59

 

El estudio de los patrones de embaldosado o teselado es un interesante tema con interés tanto en el ámbito de la ciencia y la tecnología, como del arte y el diseño. En la entrada de hoy del Cuaderno de Cultura Científica vamos a centrarnos en los patrones de teselado con un único tipo de baldosa –o tesela-, pero que además es de una gran sencillez, la conocida como “baldosa de Truchet”. Es la baldosa cuadrada dividida por la diagonal en dos zonas triangulares de dos colores distintos, por ejemplo, gris y negro, como la que aparece en la imagen.

embaldosados de TruchetBaldosa de Truchet

En el libro El sentido del orden (1979) del historiador del arte británico de origen austriaco Ernst H. Gombrich (1909-2001), conocido entre otras obras por su famosa Historia del Arte (1950), se reproducen algunos de los diseños de patrones de teselados realizados con esta baldosa que aparecen en el libro Método para hacer una infinidad de diseños distintos con cuadrados de dos colores separados por una línea diagonal (1722), del padre carmelita francés Dominique Doüat (siglo XVIII).

embaldosados de Truchet

embaldosados de TruchetIlustraciones de patrones de embaldosado, con una baldosa de Truchet, del libro Método para hacer una infinidad de diseños distintos con cuadrados de dos colores separados por una línea diagonal (1722), de Dominique Doüat

 

Estos son solamente dos de los setenta y dos diseños de patrones de embaldosados incluidos en el libro de Doüat (véase en la bibliografía un enlace a una edición facsímil con extractos y otro a la obra completa que pueden consultarse), que es un texto en el que se realiza un análisis combinatorio de los embaldosados que pueden generarse con esa baldosa. El padre Doüat empieza nombrado las cuatro orientaciones de la baldosa como A, B, C y D, como se muestra en la imagen.

Las cuatro orientaciones posibles de la tesela de Truchet, nombradas por Doüat como A, B, C y D

 

A partir de ese momento, el carmelita se dedica a realizar un análisis combinatorio con las letras A, B, C y D, empezando por los casos más sencillos, que es la única forma de clasificar con cierto orden, entre las páginas 20 y 189 (en muchas ocasiones son páginas con listados de letras). Por ejemplo, los posibles embaldosados con tan solo dos baldosas (en horizontal) serían dieciséis (cuatro posibilidades para cada posición, cuatro al cuadrado): AA, BB, CC, DD, AB, BA, CA, DA, AC, BC, DC, AD, BD, CD, DC. Al final de la obra se incluyen ilustraciones relacionadas con ese análisis combinatorio. Por ejemplo, en la siguiente ilustración se recogen los cuatro embaldosados de una sola baldosa (que son las cuatro orientaciones posibles) y de dos baldosas (en horizontal), que son las que se corresponden con el listado anterior de dieciséis.

Página del libro del padre carmelita Dominique Doüat que contiene los embaldosados con una sola baldosa, o con dos baldosas, mediante la tesela de Truchet

 

El siguiente análisis que se realiza es el de los posibles embaldosados con tres baldosas (en horizontal), que es igual a 43 = 64 (cuatro posibilidades –A, B, C, D- para cada posición), como se muestra en la siguiente tabla.

Página del libro de Dominique Doüat que contiene los embaldosados con tres baldosas utilizando la tesela cuadrada bicolor

 

Mientras que los posibles patrones de teselado con cuatro baldosas (en horizontal) son 44 = 256. Aprovechemos este análisis para comentar cuales serían los posibles patrones de embaldosado de un pavimento cuadrado 2 x 2 utilizando cuatro baldosas cuadradas bicolor. Si pensamos en ello, podemos observar que tenemos cuatro posiciones posibles para nuestras baldosas, arriba a la izquierda, arriba a la derecha, abajo a la izquierda y abajo a la derecha, luego se trata de analizar las posibles formas de colocar baldosas de Truchet, con sus cuatro orientaciones (A, B, C y D) en esas cuatro posiciones. La solución es exactamente el análisis de Doüat, luego los posibles patrones de teselado del pavimento cuadrado 2 x 2 serían también 256.

Veamos algunos de estos patrones. Por ejemplo, si consideramos embaldosados del pavimento cuadrado 2 x 2 con las cuatro teselas distintas, es decir, aparecen las cuatro baldosas orientadas A, B, C y D, se obtienen 24 patrones de teselado distintos, las permutaciones de (A, B, C, D): ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD, CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB y DCBA. Y las ilustraciones (teselados concretos) que se corresponden con estos códigos de letras son los siguientes.

Estos son los 24 patrones de embaldosado con las cuatro baldosas distintas, pero si podemos repetir baldosas, llegamos hasta los 256 mencionados. Unos pocos más los mostramos en la siguiente imagen.

Cuanto más grande sea nuestro pavimento, más complejo será el análisis. A continuación, incluimos algunas ilustraciones de embaldosados de 12 x 12 baldosas pertenecientes al libro Método para hacer una infinidad de diseños distintos con cuadrados de dos colores separados por una línea diagonal, junto con su expresión mediante las letras A, B, C y D.

Respecto a la clasificación general de los patrones de embaldosado, claramente, la cantidad de patrones distintos para un pavimento con n baldosas es 4n, que podemos describirlas con las correspondientes cadenas de letras.

Ilustración de un patrón de embaldosado, con una baldosa de Truchet, del libro Método para hacer una infinidad de diseños distintos con cuadrados de dos colores separados por una línea diagonal (1722), de Dominique Doüat

 

Los embaldosados de Truchet

Aunque el trabajo de investigación sobre los patrones de embaldosado con la sencilla tesela cuadrada de dos colores divididos por la diagonal lo inició el sacerdote dominico francés Sebastien Truchet (1657-1729) en su publicación Memoria sobre las combinaciones, publicada en Histoire de l’Académie Royale des Sciences de Paris, en 1704.

El propio Sebastien Truchet explica al inicio de su trabajo cómo se le ocurrió empezar a investigar la combinatoria de estos patrones de embaldosados:

Durante el último viaje que hice al canal de Orleans por orden de Su Alteza Real, en un castillo llamado Motte St. Lye, 4 leguas a este lado de Orleans, encontré varias baldosas de cerámica que estaban destinadas a embaldosar el suelo de una capilla y de varios otros apartamentos. Eran de forma cuadrada, divididas por una línea diagonal en dos partes coloreadas. Para poder formar diseños y dibujos agradables mediante la disposición de estas baldosas, primero examiné el número de formas en que estas baldosas podían unirse por parejas, siempre en disposición de damero […].

Desde el punto de vista histórico debemos de tener en cuenta que, aunque algunos conceptos y técnicas de la combinatoria se han estudiado desde la antigüedad, el origen de la combinatoria moderna podemos establecerlo en los siglos XVII y XVIII, gracias al trabajo de matemáticos como el francés Blaise Pascal (1623-1662), el alemán Gottfried Wilhelm Leibniz (1646-1716), quien publicara el texto De Arte Combinatoria (1666), el británico Isaac Newton (1643-1727), el suizo Jacob Bernoulli (1655-1705) o el suizo Leonhard Euler (1707-1783), quien inició o desarrolló el estudio de muchos ámbitos de la combinatoria (la teoría de grafos, los cuadrados greco-latinos, las particiones, el problema del recorrido del caballo, etc), entre otros. Por lo tanto, los trabajos de Sebastien Truchet y Dominique Doüat aparecieron en pleno desarrollo de la teoría de la combinatoria.

Ilustración de un patrón de embaldosado, con una baldosa de Truchet, de la publicación Memoria sobre las combinaciones (1704), de Sebastien Truchet

 

Claramente, la mejor forma de conseguir patrones hermosos –como podemos ver, por ejemplo, en muchos textos sobre diseños para quilts- es trabajar directamente con las baldosas cuadradas bicolor en las cuatro orientaciones (A, B, C y D), pero desde el punto de vista matemático trabajar con las letras, como hizo Doüat, permite un mejor análisis de las posibilidades combinatorias y ayuda a distinguir unas de otras, puesto que el listado de letras se convierte en el código que nos permite identificar cada embaldosado.

Quilt realizado con “cuadrados de Truchet” –o triángulos de medios cuadrados, como se cuelen denominar en los manuales sobre quilt-. Imagen de la página Carried Away Quilting

 

Otra cuestión que podemos tener en cuenta a la hora de estudiar los patrones de teselados es qué tipo de simetría tienen. Por ejemplo, si continuamos con los pavimentos cuadrados 2 x 2, aunque solo prestamos atención a los 24 patrones de embaldosado (de los 256 que hay en total) con las cuatro baldosas distintas que hemos descrito arriba, podemos observar que existen diferentes tipos de simetrías. Por ejemplo, los patrones ABCD, CDBA, BCAD y DACB se mantienen invariantes, es decir, no cambian, aunque realicemos rotaciones sobre ellos de 90, 180 o 270 grados. Tienen una simetría rotacional de 90 grados.

Los patrones ADBC, CBDA, BACD y DCAB se mantienen invariantes mediante rotaciones de 180 grados. Tienen una simetría rotacional de 180 grados. Aunque observemos que si realizamos un giro de 90 grados no se obtiene el mismo patrón, sino un patrón similar con cambio de los colores (girando 90 grados ADBC se obtiene CBDA y viceversa, y girando 90 grados BACD se obtiene DCAB y viceversa, que son patrones con los colores cambiados).

Otro tipo de simetrías que podemos considerar son las simetrías (especulares) respecto a una recta, es decir, lo que hay a un lado y a otro respecto a la recta es igual (su imagen especular, como si la recta fuera el espejo). Por ejemplo, el patrón DABC tiene simetría respecto a la recta vertical que pasa por el centro, como se muestra en la imagen.

En este sentido, tenemos que los patrones DACB y BCAD, que sabemos que tienen una simetría rotacional de 90 grados por lo visto anteriormente, tienen simetría especular respecto a cuatro rectas que pasan por el centro del cuadrado, las dos rectas horizontal y vertical, así como las dos diagonales del cuadrado.

Los patrones BACD y DCAB tienen simetría especular respecto a las dos diagonales, los patrones ADBC y CBDA respecto a las rectas vertical y horizontal que pasan por el centro del cuadrado, los patrones ACBD, BDAC, CABD y DBCA respecto a la recta horizontal que pasa por el centro y BCDA, CBAD, DABC y ADCB respecto a la vertical que pasa por el centro. En total, catorce patrones son simetría especular respecto a rectas, los que aparecen en la siguiente imagen.

En resumen, de los 24 patrones de embaldosado con las cuatro baldosas distintas, tenemos que 16 tienen alguna simetría rotacional o especular, que son las “simetrías normales”, mientras que hay 8 patrones (los que vemos en la siguiente imagen) que no tienen ninguna de estas simetrías.

Vistos juntos estos 8 patrones, podemos percibir que tienen cierto tipo de simetría. En concreto, tienen simetría con cambio de color. Los cuatro primeros patrones tienen una simetría especular respecto a la recta horizontal que pasa por el centro, pero con cambio de color, es decir, las zonas que en un lado son blancas, en el lado opuesto son negras, y al revés. Mientras que los cuatro últimos patrones tienen una simetría especular respecto a la recta vertical que pasa por el centro.

En conclusión, todos los patrones de teselado para un pavimento cuadrado de tamaño 2 x 2 tienen simetría normal o simetría con cambio de color. Esta es precisamente la versión sencilla del conocido como teorema del diamante, que describimos a continuación.

Teorema del diamante

Teorema del diamante (versión 2 x 2): Sea D la figura formada por el diamante negro, construido con las cuatro orientaciones distintas de la baldosa bicolor de Truchet, que se muestra en la siguiente imagen:

Si G es el grupo de las 24 permutaciones de los cuatro cuadrados (baldosas) de D, entonces la imagen de D mediante cualquiera de los elementos del grupo G da lugar a una figura que tiene simetría normal o simetría con cambio de color.

Pero esta solo es una versión sencilla, que nos va a permitir entender mejor la versión normal, del verdadero teorema del diamante, que explicamos a continuación.

Sea ahora D la figura de cuatro diamantes negros sobre un cuadrado 4 x 4 que mostramos en la siguiente imagen y cuyo código de letras es DADACBCBDADACBCB,

y sea G el grupo de las 322.560 transformaciones generado por las permutaciones de dos filas cualesquiera del cuadrado 4 x 4, las permutaciones de dos columnas cualesquiera o las permutaciones de dos cuadrantes 2 x 2 cualesquiera. Por ejemplo, si a la figura D le aplicamos la permutación de las columnas del medio, luego la permutación de las filas del medio, después la permutación de los cuadrantes de abajo a la izquierda y de arriba a la derecha y finalmente la permutación de las dos filas exteriores, el resultado es la siguiente figura.

El teorema del diamante, del matemático estadounidense Steven H. Cullinane (1942), dice lo siguiente.

Teorema del diamante: Todas las imágenes que se obtienen mediante alguna de las 322.560 transformaciones del grupo G de la figura D tienen simetría normal o simetría con cambio de color.

Por ejemplo, la anterior imagen tiene simetría especular con cambio de color respecto a las rectas horizontal y vertical que pasan por el centro.

O la siguiente figura que se obtiene permutando las dos primeras filas, luego las dos columnas de la derecha, después el cuadrante de arriba a la izquierda con el de abajo a la derecha y finalmente, las dos columnas centrales, tiene una simetría rotacional de 180 grados con cambio de color.

O, por ejemplo, la siguiente figura tiene simetrías rotacionales y especulares.

Pero no hemos dicho cómo obtener la figura anterior a partir de la figura original de los cuatro diamantes negros. Este es un problema, o una diversión, que el propio Steven H. Cullinane plantea como rompecabezas y que bautiza con el nombre de “rompecabezas diamante 16”.

Rompecabezas diamante 16: Primero construir 16 baldosas bicolor de Truchet sobre cartulina, obtener alguna de las figuras de la columna de la izquierda, en la siguiente imagen, e intentar transformarla en la correspondiente figura de la columna de la derecha, utilizando las transformaciones del teorema del diamante, es decir, permutaciones de dos filas cualesquiera, de dos columnas cualesquiera o de dos cuadrantes 2 x 2 cualesquiera.

 

Si no queréis construir las teselas de Truchet y jugar con ellas al rompecabezas diamante 16, podéis hacerlo en la versión online que está incluida en la bibliografía.

Terminamos con la imagen de un quilt realizado utilizando un diseño de teselado con la estructura cuadrada bicolor, con los dos colores separados por la diagonal, la baldosa de Truchet.

Quilt titulado “Blue tango” del blog de Louisa Enright

Bibliografía:

1.- Cyril Stanley Smith (con la traducción del texto de Truchet por Pauline Boucher), The Tiling Patterns of Sebastian Truchet and the Topology of Structural Hierarchy, Leonardo, vol. 20, n. 4, pp. 373-385, 1987.

2.- Dominique Doüat, Méthode pour faire une infinité de desseins différents avec des carreaux mi-partis de deux couleurs par une ligne diagonale : ou observations du Père Dominique Doüat, Religieux Carme de la Province de Toulouse, sur un mémoire inséré dans l’Histoire de l’Académie Royale des Sciences de Paris l’année 1704, présenté par le Révérend Père Sébastien Truchet religieux du même ordre, Académicien honoraire [Método para hacer una infinidad de diseños distintos con cuadrados de dos colores separados por una línea diagonal], París, 1922.

Facsímil (extractos) e introducción de Jacques André

Obra completa en Gallica – Bibliothèque nationale de France

3.- Sebastien Truchet, Memoir sur les Combinaisons, Histoire de l’Académie Royale des Sciences de Paris, 363-372 (1704).

Obra completa en Gallica – Bibliothèque nationale de France

4.- Steven H. Cullinane, The Diamond Theorem, eprint arXiv:1308.1075, 2013.

5.- Steven H. Cullinane, The Diamond Theorem

6.- 5.- Steven H. Cullinane, The Diamond 16 puzzle

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Los embaldosados de Truchet y el puzle del diamante se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Einstein y Jules Henri Poincaré

Mar, 2022/04/05 - 11:59

El matemático Jules Henri Poincaré ha pasado a la historia como el hombre que casi descubrió la relatividad. Todo indica que Einstein empleó muchas horas revisando las teorías de Poincaré antes de tener la idea feliz que llevaría a su famoso artículo de 1905 sobre el asunto. Durante un tiempo se discutió si Einstein debería haber citado las ideas de Poincaré, pero el análisis posterior muestra que Einstein llegó a un nivel de comprensión de las implicaciones físicas del trabajo de Poincaré que este mismo no alcanzó.

einstein poincaréFotografía de la primera Conferencia Solvay (1911). Poincaré está sentado hablando con Marie Curie, Einstein está de pie detrás de ellos, a la derecha.

Einstein y Henri Poincaré mantuvieron una relación notablemente fría. Poincaré nunca aceptó públicamente la teoría de la relatividad de Einstein y Einstein nunca dijo claramente que se había basado en el trabajo de Poincaré. Por otra parte, Poincaré sí recomendó a Einstein para uno de sus primeros empleos, llamándole “una de las mentes más originales con las que nunca me haya tropezado”.

En los primeros años del siglo XX, el francés era uno de los matemáticos más destacados del mundo. Desarrolló la teoría cualitativa moderna de sistemas dinámicos, contribuyó notablemente al establecimiento de un nuevo campo de investigación en matemáticas, la topología, y lo usó para probar que el Sistema Solar es estable, aparte de ser el presidente del Bureau des Longitudes y coautor de sus extraordinariamente precisos mapas.

Por lo que respecta a la relatividad, Poincaré y el físico holandés Hendrik Antoon Lorentz intercambiaban teorías y artículos regularmente sobre la naturaleza del tiempo. Lorentz había creado ecuaciones en las que el tiempo parecía diferente para diferentes observadores. Sin embargo, Lorentz vio esta suposición como una herramienta matemática, no como una verdadera representación de la realidad. Poincaré intentó plantear a qué correspondería en el mundo real este cambio en el tiempo dentro de las ecuaciones. Sugirió que podían interpretarse como relojes sincronizados por señales de luz; dado que la luz tomaría un tiempo finito para viajar entre un reloj y el otro, los relojes en diferentes sistemas mostrarían tiempos diferentes.

¿El principio de relatividad de Einstein y Poincaré?

En 1904, Poincaré incluyó una sección dedicada al principio de la relatividad (la idea de que cosas como el tiempo eran relativas dependiendo de en qué sistema está el observador) en una conferencia llamada “Sobre el estado presente y futuro de las física matemática”. Su transcripción fue el primer texto en el que se trata el concepto y aparece el nombre de la relatividad. Pero, durante la conferencia, Poincaré se retractó de esta idea, sumándose a la original de Lorentz de que solo existe un “tiempo real”. Escribió, “los relojes sincronizados de esta manera no muestran por lo tanto el tiempo real, sino lo que podríamos llamar ‘tiempo local’ de tal forma que uno está retrasado con respecto al otro. Esto no importa mucho, ya que no tenemos forma de determinarlo”. (Esta conferencia de 1904 de Poincaré también incluía otros indicios sobre el futuro desarrollo de la física. Poincaré señaló por primera vez que la velocidad de la luz podría jugar un papel principal en la física, estructurando la teoría no solo en óptica y electrodinámica sino también en la mecánica).

En esa época, Einstein estaba trabajando en la Oficina Suiza de Patentes en Berna, y se encontraba en medio de conversaciones muy estimulantes con su amigo Michele Besso, así como con sus otros amigos Conrad Habitch y Maurice Solovine en su esperpéntica Academia Olímpica. Solovine luego comentaría que Einstein hizo que la academia emplease varias semanas revisando La science et l’hypothèse de Poincaré. El libro de Poincaré reducía el éter a una hipótesis que era simplemente “conveniente para la explicación de los fenómenos” e incluso predecía que “un día el éter sería indudablemente descartado como innecesario”.

Así, el cerebro de Einstein estaba filtrando toda esta información conforme discutía con sus amigos y pensaba acerca de la naturaleza de la luz. Sin embargo, cuando publicó la teoría especial de la relatividad (cuando de repente todo encajó en su cabeza y anunció una mañana a sus amigos que no se preocuparan, que había resuelto completamente el problema) la única nota a pie de página fue de agradecimiento a Besso. Al defender su falta de atribuciones, Einstein afirmó que no conocía ni el artículo de 1904 de Lorentz ni el de Poincaré de 1905 que discutía la relatividad. “En ese sentido”, argumentaba Einstein, “mi artículo de 1905 fue independiente”.

La teoría de la relatividad de Einstein se divulgó rápidamente en toda la comunidad científica, y la mayoría de los científicos la aceptaron sin dilación. Pero Poincaré se mantuvo especialmente callado. No rechazó las ideas de Einstein activamente; simplemente las ignoró. Los dos hombres solo se encontraron una vez, en la Primera Conferencia Solvay, en 1911. Después Einstein escribiría, “Poincaré fue simplemente negativo [hacia la teoría de la relatividad] y a pesar de toda su perspicacia mostró poca comprensión de la situación”.

Poincaré fallecería en 1912 con tan solo 58 años. Mucho después de su muerte, Einstein habló de él en una conferencia en la Academia Prusiana de Ciencias, pero no hizo referencia a la relatividad. En vez de eso, ensalzó al “agudo y profundo Poincaré” que supo unir física y geometría.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Una versión anterior de este artículo se publicó en Experientia Docet el 5 de julio de 2009.

El artículo Einstein y Jules Henri Poincaré se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

¿Hay terremotos de origen volcánico en Marte?

Lun, 2022/04/04 - 11:59

 

Uno de los grandes retos de la geología moderna sigue siendo el de poder conocer con detalle la estructura interna de los planetas: como son estas capas –si son monolíticas o si están muy fracturadas-, en qué estado están -sólidas o líquidas-, y cuál es su composición. Y no es un dato baladí, ya que nos abriría una puerta a una mejor comprensión de el origen y evolución de estos y, quizás, a responder por qué los planetas no gaseosos somos en apariencia tan diferentes entre sí.

Desgraciadamente no podemos abrir una ventana y mirar al interior de los planetas y la única manera que tenemos de poder saber que hay dentro es mediante métodos indirectos, pero fuera de la Tierra no es una tarea fácil. De hecho, una de las mejores ventanas, y disculpen la paradoja, que teníamos para mirar al interior de planetas y asteroides eran los meteoritos.

terremotos MarteLos cráteres nos dejan ver algo del interior de los planetas, pero no mucho. NASA/JPL/ASU.

Una de las consecuencias más evidentes de las colisiones de los distintos cuerpos que se mueven en nuestro Sistema Solar es la formación de los cráteres de impacto, que a veces nos permiten tener a la vista unos pocos cientos de metros e incluso algunos kilómetros hacia el interior de la corteza.

Al mismo tiempo que se producen estos choques puede ocurrir que, debido a la violencia del impacto, algunos trozos de esos planetas salgan despedidos con tal velocidad que escapen a su propio planeta y no vuelvan a caer sobre este, sino que queden vagando por el espacio en órbita alrededor del Sol.

Eventualmente, puede ocurrir que estos fragmentos expulsados de un planeta acaben encontrándose a lo largo de su camino con otros planetas, como la Tierra, cayendo como meteoritos que podemos recuperar y que a veces nos ayudan a inferir propiedades de la corteza y manto del planeta del que provienen.

Esto resulta insuficiente. Tenemos que acercarnos más si queremos obtener más detalles sobre el interior de los planetas. Desde la segunda mitad del siglo XX hemos tenido la oportunidad de poder enviar sondas a distintos cuerpos de nuestro Sistema Solar, y estas nos han permitido conocer mejor los interiores planetarios gracias al estudio de su campo gravitatorio y magnético, que nos da algunas pistas sobre la distribución de la masa en el interior de estos y sobre el estado de los materiales en el interior.

Escuchando los terremotos de Marte

Pero si queremos saber más, tenemos que llegar hasta la superficie de los planetas e instalar instrumentos lo suficientemente sensibles que nos permitan escuchar de una manera inequívoca el latido de los planetas: los terremotos.

Para detectar y estudiar estos hacemos uso de unos sensores que llamamos sismómetros, que miden la amplitud del desplazamiento del suelo, no solo debido a los terremotos, sino al viento, el oleaje, las explosiones o incluso el tráfico, entre muchas otras causas naturales y artificiales.

Estudiando como se propagan las ondas a través del planeta, como cambian de velocidad y de amplitud e incluso como sufren fenómenos de refracción y reflexión de estas ondas al atravesar las distintas capas podemos hacernos una imagen mucho más detallada del interior de los planetas y construir un modelo mucho más preciso, tanto a nivel físico como químico.

terremotos MarteUna reconstrucción de la misión InSight totalmente desplegada en la superficie de Marte. El sismómetro es ese aparato con forma de cúpula en primer plano. NASA/JPL.

Hasta el momento, tres son los sismómetros que ha viajado a Marte: Dos en los años setenta a bordo de los módulos de aterrizaje de las misiones Viking 1 y 2, y que desgraciadamente no sirvieron de mucho y otro a bordo de la misión InSight, que aterrizó en Marte en noviembre de 2018 y que todavía está en funcionamiento y recabando datos. Para que nos hagamos una idea del salto cualitativo y cuantitativo, mientras las Viking detectaron inequívocamente un único evento de origen sísmico, la InSight ha detectado ya a lo largo de su misión unos 500 terremotos y más de 800 eventos de corta duración que probablemente estén asociados a la rotura de la roca por los cambios de temperatura.

¿Y si en Marte hubiesen terremotos de origen volcánico?

En Marte, obviamente, solo esperamos terremotos de origen natural –salvo cuando aterriza o choca alguna misión contra su superficie- pero principalmente generados por la tensión acumulada en las rocas y que al no poder seguir acomodando como deformación, acaba rompiéndolas y liberando toda esa energía en forma de ondas sísmicas.

Imagen de la señal de terremotos en distintos lugares del Sistema Solar. Los dos primeros en ocurrieron en la Tierra, el tercero a Marte y el cuarto a la Luna. ETZ Zürich.

Pero, ¿y si en Marte hubiesen terremotos también de origen volcánico? Lo cierto es que cuando miramos al planeta rojo, vemos un planeta frío, yermo, cuyo principal agente geológico en superficie es el viento. Al menos, desde que tenemos capacidad para estudiar Marte de una manera más o menos continua no hemos observado nada que se parezca a una erupción volcánica.

Marte tiene algunos de los volcanes más grandes de nuestro Sistema Solar, especialmente aquellos que están situados en la región de Tharsis, donde entre otros se encuentra Olympus Mons, que supera los 20 kilómetros de altura, pero que en la actualidad no tienen actividad, muy probablemente debido al enfriamiento del interior del planeta, a diferencia de lo que ocurre en nuestro la Tierra, cuya dinámica interna queda patente a través de un importante nivel de vulcanismo en superficie.

Pero hay una zona en Marte denominada Cerberus Fossae, relativamente próxima a la zona de aterrizaje de la misión InSight, y que parece tener un nivel de actividad importante. Este lugar es un sistema de fracturas que supera los 1200 kilómetros de longitud y que en algunos puntos está rodeado de unos halos oscuros, como si algo hubiese salido de esas fracturas y hubiese “manchado” el terreno circundante.

Una pequeña porción de Cerberus Fossae en falso color para mostrar las diferencias composicionales entre el exterior y el interior. NASA/JPL/ASU.

Precisamente Cerberus Fossae es un sistema de fisuras extensional, donde la corteza se está separando, parecido a lo que ocurre en el valle del Rift, en África, por poner un ejemplo cercano a nosotros, y donde hay un vulcanismo muy activo.

Los estudios más recientes sugieren que en esa zona podría haber habido fenómenos de vulcanismo activo en los últimos millones de años, quizás hace menos de diez según algunos autores, e incluso alrededor de los 50.000 años por otros autores, reciente en términos geológicos y muy reciente si tenemos en cuenta el grado de actividad geológica que apreciamos en Marte hoy día.

Bueno, ¿y qué tiene que ver esto con los terremotos? Los fenómenos volcánicos son uno de los mayores generadores de terremotos naturales en nuestro planeta: los movimientos del magma y otros fluidos moviéndose y emplazándose por la corteza pueden fracturar las rocas debido al aumento de presión, y también pueden aparecer vibraciones continuas fruto de un movimiento más asísmico, de estos fluidos por conductos más desarrollados (algo así como si tocamos una tubería de agua mientras esta circula por dentro).

La misión InSight lleva más de tres años vigilando los terremotos marcianos y algunos de estos parecen provenir de Cerberus Fossae, pero la causa de los terremotos que han sido detectados no está muy clara: o son por el propio enfriamiento del planeta, que al “encoger” somete a mucho esfuerzo a las rocas y acaban partiéndose, o se deben a otras fuerzas que están generando esas fracturas que se abren formando Cerberus Fossae, o a la migración de distintos fluidos por el interior de Marte o al movimiento de magma.

El último estudio publicado sobre este tema, Sun, W., & Tkalčić, H. (2022) Repetitive marsquakes in Martian upper mantle, ha estudiado todo el registro sísmico de la misión InSight descubriendo un mayor número de terremotos del detectado inicialmente gracias al uso de técnicas más avanzadas para encontrar las señales de menor amplitud que podían haber pasado desapercibidas.

Es importante saber que en la superficie de Marte sopla el viento y a pesar de que el sismómetro está relativamente aislado, este viento genera una señal continua en forma de vibración que puede enmascarar los eventos más pequeños, por lo que a veces cuesta detectarlos. Algo así como cuando vamos al cine y tenemos a alguien comiendo palomitas a nuestro lado: nos cuesta escuchar los diálogos de la película. Pues bien, el viento es una fuente de ruido para la señal sísmica igual que lo es el masticar de las palomitas para nosotros en el cine.

Estos nuevos terremotos parecen no seguir un patrón, sino que ocurren de una manera más o menos continua e incluso algunos podrían estar asociados con terremotos de mayor magnitud previamente detectados.

Los autores del estudio interpretan que estos nuevos terremotos se parecen a los que ocurren en nuestro planeta por el movimiento del magma, generando enjambres de terremotos relacionados con la migración lateral y vertical del magma.

terremotos MarteEste modelo del interior de Marte ha sido desarrollado a partir de las ondas sísmicas recogidas por la misión InSight. La trayectoria y los cambios de velocidad de las ondas nos ayudan a reconstruir como son las distintas capas de su interior. Khan et al. (2021).

En este caso, parece que los terremotos ocurrirían en el manto de Marte, demostrando que en su interior podría quedar más calor del que pensábamos. Eso sí, es muy probable que debido al grosor de la corteza de Marte –que se encuentra entre los 24 y 70 kilómetros-, el magma tendría muchas dificultades para aflorar en superficie y provocar una erupción volcánica, explicando la baja actividad volcánica que vemos en la actualidad.

Sin duda, una teoría apasionante que pone de manifiesto cuanto nos queda por saber y aprender de Marte… y quien sabe si nos abre a la posibilidad de que algún día veamos una erupción volcánica en Marte.

Referencias

Sun, W., & Tkalčić, H. (2022). Repetitive marsquakes in Martian upper mantle. Nature Communications, 13(1), 1695. doi:10.1038/s41467-022-29329-x

Horvath, D. G., Moitra, P., Hamilton, C. W., Craddock, R. A., & Andrews-Hanna, J. C. (2021). Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus, 365, 114499. doi: 10.1016/j.icarus.2021.114499

Khan, A., Ceylan, S., van Driel, M., Giardini, D., Lognonné, P., Samuel, H., Schmerr, N. C., Stähler, S. C., Duran, A. C., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J. F., Davis, P. M., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S. M., … Banerdt, W. B. (2021). Upper mantle structure of Mars from InSight seismic data. Science, 373(6553), 434-438. doi: 10.1126/science.abf2966

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

El artículo ¿Hay terremotos de origen volcánico en Marte? se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Más con menos

Dom, 2022/04/03 - 11:59
más con menosScarabaeus sacer (escarabajo pelotero sagrado) tenía estatus de dios en el Antiguo Egipto.

Cuenta Beth Shapiro en su último libro que al comienzo del Holoceno, en Beringia, la región que comprende los extremos noroccidental de América y nororiental de Asia, la tundra esteparia fue sustituida por el actual ecosistema de tundra, que es menos productivo que el anterior. Ello se debe, en parte, a que los grandes herbívoros que antes habían reciclado los nutrientes, dispersado las semillas y removido el suelo, habían desaparecido a causa, sobre todo, de la caza por seres humanos. La intervención humana no solo redujo las poblaciones de grandes mamíferos de manera directa como consecuencia de la caza, sino que también lo hizo indirectamente, al reducir su efecto beneficioso sobre la productividad de la tundra, y limitar de esa forma el aporte de materia vegetal para alimentar a aquellos.

Es esta una noción hasta cierto punto paradójica. Porque lo que acabo de decir es que cuando hay menos animales, disponen estos también de menos comida, algo que, a primera vista, puede resultar contradictorio. Pero no lo es. En un ecosistema muy productivo se produce mucha biomasa vegetal y, sin embargo, si los herbívoros que lo ocupan consumen esa biomasa rápidamente, lo normal es que no haya mucha. Se obtiene más (producción) con menos (biomasa).

La clave está en la función que cumplen los herbívoros, los organismos que descomponen la materia muerta y los que se comen a los anteriores que, tras asimilar el alimento, eliminan los desechos que contienen las sustancias minerales de las que depende el crecimiento de las plantas. Cuanto mayor sea la cantidad de nutrientes minerales que se reciclan por unidad de tiempo, mayor disponibilidad de ellos habrá para su reutilización por los vegetales, también por unidad de tiempo. Me refiero a sustancias tales como compuestos de nitrógeno y de fósforo o minerales como el hierro que usan las plantas para hacer nuevos tejidos.

En lo que a moluscos bivalvos se refiere, el enclave costero más productivo que conozco es la Ría de Arosa. Como en otras rías, los que allí se cultivan y los que habitan en las explanadas de sedimento y arenas en la zona entre mareas crecen muy rápidamente. Pues bien, la concentración de microalgas en las aguas de la ría de Arosa suele ser inferior a la de otros estuarios que conozco donde también crecen poblaciones de esos moluscos.

Algo similar ocurre con las ballenas (cetáceos misticetos) cuyo alimento más importante es el krill, un pequeño crustáceo. Antes de que las poblaciones de cetáceos fueran diezmadas y llevadas al borde de la extinción, las aguas antárticas eran mucho más productivas que lo son ahora. Las ballenas barbadas consumían ingentes cantidades de krill, lo que aceleraba el ciclo de los nutrientes -en especial el hierro- y permitía una alta productividad de las microalgas de fitoplancton y, como consecuencia, gran producción de krill. Ahora esos mares son mucho menos productivos, porque las pocas ballenas que quedan no pueden realizar un reciclaje tan intenso del hierro.

En Australia tuvieron que importar escarabajos peloteros africanos para que se comiesen las boñigas del ganado y ayudasen a liberar los nutrientes contenidos en ellas, restaurando así la productividad de los pastos. Al parecer, a los escarabajos australianos no les interesaban las boñigas de los herbívoros foráneos, solo querían las de los canguros, de manera que la producción de las praderas se vio muy mermada.

La naturaleza tiene sus reglas, y los seres humanos, a pesar de ser parte de ella, intervenimos a menudo en sus cosas sin calibrar los efectos últimos de nuestra intervención. A veces estamos a tiempo de corregir desmanes. Solo a veces.

 

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Más con menos se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Día de Pi con BCAM Naukas 2022: Carmen Quinteiro – Sembrando cuadrados, cosechando árboles

Sáb, 2022/04/02 - 11:59

https://culturacientifica.com/2021/12/01/paseando-entre-arboles-de-pitagoras/

La forma en la que se escribe el 14 de marzo en inglés y euskera coincide con los tres primeros dígitos de la famosa constante matemática: 3-14 martxoaren 14 en euskara / 3-14 March, 14th en inglés. En los últimos años, la conmemoración del Día de Pi se ha ido extendiendo, hasta tal punto que el 26 de noviembre de 2019 la UNESCO proclamó el 14 de marzo Día Internacional de las Matemáticas.

Un año más, el Basque Center for applied Mathematics-BCAM y la Cátedra de Cultura Científica de la UPV/EHU se han suamdo a la celebración, organizando la tercera edición del evento BCAM-NAUKAS, que se desarrolló a lo largo del 14 de marzo en el Bizkaia Aretoa de la UPV/EHU.

Carmen Quinteiro, que es profesora titular de matemáticas en la Universidad de Vigo, partiendo del teorema del punto fijo de Brower no enseña como se pueden obtener árboles a partir de un cuadrado. Esta charla se complementa especialmente bien con esta anotación de Raúl Ibáñez: Paseando entre árboles de Pitágoras.

 



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Día de Pi con BCAM Naukas 2022: Carmen Quinteiro – Sembrando cuadrados, cosechando árboles se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Instantáneas en tiempo real de la formación y crecimiento de polímeros 2D

Vie, 2022/04/01 - 11:59

Investigadores del grupo del profesor Ikerbasque Aurelio Mateo-Alonso en POLYMAT y en la UPV-EHU, en colaboración con investigadores de KU Leuven (Bélgica) y la Universidad de Aveiro (Portugal), han conseguido, literalmente, instantáneas en tiempo real de la formación y crecimiento de polímeros 2D, molécula por molécula. Los resultados se han publicado en Nature.

formación y crecimiento de polímeros 2DBoroxina bidimensional. Fuente: Ullah et al (2019)

Ya no podemos imaginar la vida sin polímeros. Los productos hechos de polímeros están a nuestro alrededor, desde ropa hecha de fibras sintéticas hasta lentes de plástico en gafas. Los polímeros se forman cuando pequeñas moléculas llamadas monómeros se unen para formar largas cadenas. Si un monómero reacciona con más de dos monómeros, se pueden formar láminas con una estructura interna periódica, denominadas polímeros bidimensionales (2D). Algunos de estos polímeros 2D son porosos y podrían usarse como membranas. Otros tipos son prometedores para la electrónica avanzada.

Cómo se forman exactamente estos polímeros 2D sigue siendo un misterio. Es importante conocer su mecanismo de formación para potenciar el tamaño y la perfección estructural de estos interesantes materiales.

Los científicos emplearon microscopía de túnel de barrido, un tipo avanzado de microscopía no óptica, para seguir en tiempo real, a medida que se forman y se rompen los enlaces, molécula por molécula, el nacimiento y crecimiento de un polímero 2D de boroxina en un soporte sólido inmerso en una solución reactiva. Con el apoyo de la teoría, demostraron que coexisten varios mecanismos de crecimiento y controlarlos conduce a la formación de láminas de polímero de gran tamaño y alta calidad.

Referencia:

Gaolei Zhan, Zhen-Feng Cai, Karol Strutyński, Lihua Yu, Niklas Herrmann, Marta Martínez-Abadía, Manuel Melle-Franco, Aurelio Mateo-Alonso & Steven De Feyter (2022) Observing polymerization in 2D dynamic covalent polymers Nature doi: 10.1038/s41586-022-04409-6

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Instantáneas en tiempo real de la formación y crecimiento de polímeros 2D se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Aguas que no vemos, pero aguas que bebemos

Jue, 2022/03/31 - 11:59

El pasado 22 de marzo se celebró el Día Mundial del Agua, una efeméride que pretende concienciar sobre la importancia y necesidad de hacer un uso racional y sostenible del líquido elemento si queremos que la vida siga desarrollándose en la Tierra. Y es que, aunque se la conozca como “el planeta azul” por la abundante presencia de agua en la misma, en realidad se trata de un bien muy escaso, ya que el agua dulce, esa que podemos aprovechar de manera directa los seres humanos, representa menos del 3% del total del agua de nuestro planeta. Además tampoco es tan fácil acceder a las reservas de agua dulce, ya que aproximadamente el 66% está congelada en glaciares y casquetes polares, un 30% son aguas subterráneas y solo un 4% la encontramos en ríos y lagos. Y este año las protagonistas del Día Mundial del Agua han sido las aguas subterráneas, buscando “hacer visible lo invisible”.

Aguas subterráneasFoto:  Michael Behrens / Unsplash

Las aguas subterráneas siempre han sido las más desconocidas y han generado mitos y leyendas tenebrosas que han quedado grabadas en el imaginario colectivo, llegando incluso a darnos pavor su mención al asociarlas, en muchas ocasiones, con la muerte. Solo hay que recordar ese río de los muertos que debían cruzar los egipcios o el tránsito de las almas de los griegos por la Laguna Estigia. Pero dejemos de lado la mitología y veamos lo que nos dice la Geología sobre ellas.

Aguas subterráneas en poros, no en ríos

Las aguas subterráneas son las que se infiltran en el terreno y se acumulan y circulan bajo tierra. Pero, a diferencia de lo que cuentan las leyendas, no se suelen encontrar en enormes túneles subterráneos por los que se mueven como grandes ríos. Estos grandes conductos solo están presentes en algunos tipos de rocas como, por ejemplo, las calizas, formadas principalmente por carbonato cálcico (CaCO3). Cuando el agua de lluvia, que es ligeramente ácida porque tiene disuelto algo de CO2 atmosférico, entra en contacto con estas rocas carbonatadas, reacciona químicamente y las disuelve hasta formar cuevas y cavidades en las que se forman lagos y ríos subterráneos.

Realmente, la mayor parte del agua subterránea se almacena y se desplaza a través de unos orificios microscópicos que tienen algunas rocas y sedimentos y que conocemos como poros. Esta porosidad convierte a estos materiales en permeables, es decir, permite que el agua circule a través de ellos. En Geología denominamos a estos materiales como acuíferos. Estas aguas subterráneas vuelven a salir al exterior alimentando a los ríos o a través de surgencias o manantiales. De esta forma, tanto el agua superficial como la subterránea acaban desembocando en los océanos, cerrando así el ciclo hidrológico.

Pero hay ocasiones en que el agua subterránea circula a mucha profundidad a través de fallas o fracturas en el terreno o bien discurre cerca de zonas volcánicas. Esto hace que su temperatura, al alcanzar la superficie, sea elevada. Así es como se forman las aguas hidrotermales. Esta agua caliente tiene la capacidad de captar elementos químicos de las rocas que atraviesa y transportarlos en disolución. Cuando esa agua asciende hacia la superficie a través de fracturas del terreno, se va enfriando y pierde la capacidad de transportar esos elementos, por lo que los va liberando por el camino y acaban reaccionando químicamente con las rocas que atraviesa, dando lugar a diferentes tipos de mineralizaciones que pueden tener un interés comercial.

Aguas subterráneasSurgencia de agua dulce subterránea en la playa de Castro Urdiales (Cantabria). Foto: Blanca María HernándezLos antiguos sí que sabían

Nuestros antepasados ya se dieron cuenta del potencial del uso del agua subterránea para su propia subsistencia. Los romanos y los musulmanes preferían utilizar el agua subterránea, antes que la de los ríos, para garantizar el abastecimiento de grandes ciudades como Roma, Sevilla o Mérida. Siempre nos ha sorprendido que captasen agua de manantiales alejados de las urbes y la transportasen empleando enormes acueductos a pesar de estar ubicadas junto a grandes ríos. Pero estas civilizaciones conocían los rigores del clima mediterráneo, con grandes reducciones de caudal de los ríos durante las épocas de sequía y con momentos de arrastre y acumulación de sedimentos y residuos durante las épocas de lluvias intensas, disminuyendo la calidad del agua. Por ello, preferían utilizar el agua subterránea que no se veía influenciada por estos factores. Y también les dieron un buen uso a las aguas hidrotermales, empleándolas en las termas y baños públicos precursores de los balnearios modernos. Incluso, en los últimos siglos hemos llegado a embotellar y comercializar esta agua mineral procedente de surgencias hidrotermales.

En la época actual, en la que el agua dulce apta para el consumo humano se ha convertido en un recurso de primera necesidad que es cada vez más escaso debido a los efectos de la emergencia climática, la contaminación y alteración de los ambientes acuáticos y la sobreexplotación del agua de ríos, arroyos, lagos y embalses, los estudios geológicos centrados en las aguas subterráneas son básicos para nuestro desarrollo. Conocer dónde están los acuíferos, por dónde se va a mover o va a salir al exterior el agua y cuál puede ser su composición química, nos permite planificar cómo explotarla de manera sostenible y mantenida en el tiempo para asegurarnos un suministro futuro de agua. Pensad en esta última reflexión la próxima vez que abráis el grifo y os bebáis un vaso de ese líquido vital formado por moléculas compuestas por dos átomos de hidrógeno unidos a uno de oxígeno.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

El artículo Aguas que no vemos, pero aguas que bebemos se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Mujeres matemáticas de Budapest

Mié, 2022/03/30 - 11:59

 

Hace unos días participé en el XLII Seminario de Historia de la Matemática de la UCM (organizado por el profesor Miguel Ángel Gómez Villegas) hablando de seis mujeres matemáticas nacidas en Budapest.

Mujeres matemáticas de BudapestPrimera diapositiva de “Mujeres matemáticas de Budapest”

 

Cuando Miguel Ángel me propuso intervenir en el seminario con este tema, consulté el repositorio MacTutor y encontré a 42 personas nacidas en la capital de Hungría. Por supuesto, este listado no es exhaustivo; la búsqueda en otros lugares puede proporcionar algunos nombres diferentes. Pero MacTutor es, para mí, un repositorio de referencia, muy completo y bien documentado. En este listado de personas nacidas en Budapest aparecían solo dos mujeres, Rózsa Péter y Vera T. Sós. Aunque sí figuraban los maridos de cuatro de las seis mujeres citadas en mi conferencia: John von Neumann (esposo de Klára Dán von Neumann, Dán es su apellido de soltera), Alfréd Rényi (marido de Kató Rényi, de soltera Katalin Schulhof), George Szekeres (esposo de Esther Szekeres, apellidada Klein antes de casarse) y Paul Turán (marido de Vera T. Sós).

¿Queréis conocer un poco mejor a estas seis mujeres nacidas en Budapest?

Esther y Márta, una amistad duradera

Introduje a Esther Klein (1910-2005) a través del denominado (por Paul Erdős) problema del final feliz, del que ya hablamos en este blog. Esther Klein y Márta Wachsberger nacieron en 1910, ambas en el seno de familias judías. Desde pequeñas destacaron en matemáticas, compartiendo aula de secundaria en Budapest y manteniendo su temprana y estrecha amistad durante toda su vida. Las limitaciones impuestas a los judíos en Hungría a finales de la década de 1920 solo permitían que dos estudiantes de su clase pudieran cursar carreras de ciencias en la Universidad de Budapest: Márta eligió la plaza de matemáticas y Esther optó por la de física.

Esther conoció a George Szekeres en la universidad; se casaron en 1937, y ella pasó a ser Esther Szekeres. Huyendo de la amenaza nazi, el matrimonio viajó en 1939 a China donde permanecieron hasta 1948, cuando la Universidad de Adelaida ofreció un puesto a George. Durante los primeros tres años de estancia en Australia los Szekeres compartieron un pequeño apartamento con sus amigos George y Márta Svéd (Márta Wachsberger de soltera). Parte de la historia de Esther puede leerse en [1]; y también parte de la de Márta. Junto a su marido, el ingeniero George Svéd, huyó en 1939 a Australia debido a su procedencia judía. Márta fue profesora, realizó alguna contribución matemática, y escribió el original libro Journey into Geometries, que ofrece una introducción informal a las geometrías no euclidianas a través de una serie de diálogos entre Alicia, su tío Lewis Carroll y un visitante del siglo XX, el Dr. Whatif. Alicia modera las discusiones entre Carroll, que defiende la geometría euclidiana, y Whatif que realiza preguntas controvertidas y perspicaces.

Mujeres matemáticas de BudapestPortada de Journey into Geometries (Mathematical Association of America, 1991).

 

Con 75 años, Márta defendió su tesis doctoral On Finite Linear And Baer Structures en la Universidad de Adelaida. Falleció 20 años más tarde, dos días después que su amiga Esther.

Vera y Kató, trayectorias cruzadas

No es fácil encontrar una amistad tan duradera como la de Esther y Márta. En matemáticas existen varios teoremas “de la amistad”; uno de ellos fue demostrado por Paul Erdős, Alfréd Rényi y Vera T. Sós; su enunciado puede leerse en este blog.

Vera T. Sós (1930) es una matemática húngara cuya investigación se ha centrado fundamentalmente en teoría de números y combinatoria. Su currículum investigador es impresionante: ha colaborado con numerosos matemáticos, publicando más de 100 artículos en revistas matemáticas. En la década de 1950 demostró el famoso teorema de tres distancias, resultado conjeturado por Hugo Steinhaus y demostrado independientemente por Stanisław Świerczkowski. Puede leerse algo más de ella en [2].

Mujeres matemáticas de BudapestKató Renyi, Paul Turan, Vera Sós y Paul Erdős. Imagen tomada del blog de Gil Kalai

 

Katalin Schulhof (1924-1969) comenzó sus estudios universitarios en 1942 en Budapest (allí fue alumna de Turán, quien posteriormente se casó con Vera Sós) y, a partir de 1945, los continuó en Szeged, donde conoció a Alfred Rényi, su futuro esposo. El matrimonio pasó dos años en Leningrado (hoy San Petersburgo) y regresaron a Budapest, donde Kató Rényi terminó la universidad en 1949. En 1950, se convirtió en profesora en la Universidad Eötvös Loránd. Fue una docente muy apreciada; por ello, en su honor, la Sociedad Matemática János Bolyai fundó el Premio Conmemorativo Kató Rényi concedido a resultados de investigación originales de estudiantes de pregrado.

Kató estaba interesada en la teoría de números y contribuyó a la teoría de funciones analíticas complejas. De su investigación en matemáticas resultaron 21 artículos científicos, algunos de ellos compartidos con su marido, conocido especialista en probabilidad y combinatoria. De hecho, su último trabajo conjunto (The Prüfer Code for k-Trees, 1970) se publicó en Combinatorial Theory and its Applications después del fallecimiento de Kató en agosto de 1969. Alfred preparó el artículo final, indicando en un pie de página que parte de los resultados de la investigación eran exclusivos de Kató…

Klára y Rozsda, “atrapadas” por la computación

Klára Dán Von Neumann, como Kató Rényi, vivió a la sombra de un científico brillante. Aunque no tenía formación matemática posterior a la del instituto, aprendió a programar de manera autodidacta. Nació en 1911 en el seno de una familia acomodada. Conoció a John von Neumann antes del comienzo de la Segunda Guerra Mundial; en 1938 el matemático se divorció de su esposa y Klara Dán de su marido, y se casaron. El matrimonio emigró a EE. UU., donde von Neumann ocupó una cátedra en Princeton.

Entre otras aportaciones, Klára trabajó en la máquina ENIAC para producir el primer pronóstico meteorológico con ayuda de una computadora. Tradujo a código de programación las ecuaciones simplificadas de la dinámica atmosférica y, en 1950, se realizó la primera predicción del tiempo por ordenador. Enseñó al equipo de meteorólogos a programar la ENIAC y revisó el programa final. Von Neumann, Jule Charney y Ragnar Fjörtoft publicaron en 1950 el artículo Numerical Integration of the Barotropic Vorticity Equation con los detalles de este experimento. Klára no firmó ese trabajo y quedó al margen de los reconocimientos. Solo aparecía como Mrs. K. VON NEUMANN, invisibilizada, en los agradecimientos finales. Puede leerse más sobre su trabajo en [4].

También trabajó en computación Rózsa Péter. Nacida en 1905, por imposición de su padre, empezó a estudiar química para trabajar junto a su hermano mayor, que cursaba medicina. En su primer año de carrera, descubrió en las clases de Lipót Fejér su gusto por las matemáticas. Y se cambió de grado.

Portadas de dos de los libros de Rózsa Péter

 

Es muy conocida por su libro Jugando con el Infinito, una reflexión sobre temas relacionados con la geometría, la lógica y la teoría de números dirigida a un público no experto.

Rózsa trabajó fundamentalmente en funciones recursivas, tanto de manera teórica como en su importancia en computación. Puede leerse más sobre ella en [5].

Esther, Márta, Vera, Kató, Klára y Rózsa fueron seis matemáticas, nacidas en Budapest, que se cruzaron de diferentes maneras a lo largo de sus vidas. Aunque estas últimas palabras son de Rózsa Péter, estoy segura todas ellas las compartían:

Me encantan las matemáticas no sólo por sus aplicaciones técnicas, sino sobre todo porque son hermosas.

Referencias

[1] Marta Macho Stadler, Esther Szekeres y Márta Svéd, unidas por las matemáticas y una larga amistad, Mujeres con ciencia, 5 de mayo de 2020.

[2] Marta Macho Stadler, Vera T. Sós, especialista en combinatoria, Mujeres con ciencia, 10 de abril de 2019.

[3] Gil Kalai, The last paper of Catherine Rényi and Alfréd Rényi: Counting k-Trees, Combinatorics and more, 1 de mayo de 2019.

[4] Marta Macho Stadler, Klára Dán Von Neumann, desconocida pionera de la programación, Mujeres con ciencia, 6 de enero de 2021.

[5] Teresa E. Pérez Fernández, Rocío Raya Prida y Evangelina Santos Aláez, Rózsa Péter (1905-1977). Jugando con el infinito, Mujeres con ciencia, 21 de diciembre de 2017.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Mujeres matemáticas de Budapest se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Einstein y el condensado de Bose-Einstein

Mar, 2022/03/29 - 11:59

En los años 20 del siglo XX, Albert Einstein amplió las ideas del físico indio Satyendra Nath Bose para predecir que, a temperaturas extremadamente frías, los átomos se unirían en una nueva fase de la materia (diferente a líquido, gas, sólido o plasma) conocida como condensado de Bose-Einstein.

condensado de Bose-EinsteinFoto Robert Zunikoff / Unsplash

En 1924, Bose vivía en Calcuta y no conseguía llamar la atención de sus colegas europeos sobre su trabajo. Se decidió a escribir a Einstein, adjuntándole un artículo que usaba una nueva forma de estadística para deducir la ley de Planck, la famosa ecuación que representa la intensidad de la radiación de un cuerpo negro como función de la temperatura. Einstein quedó impresionado con la mecánica estadística de fotones de Bose, calificándola como “una avance significativo”. Tradujo personalmente el artículo al alemán e intervino para que se publicase [1] en Zeitschrift Für Physik en 1924.

La nueva estadística de Bose ofrecía más información sobre cómo comprender el comportamiento de los fotones. Bose demostró que si un fotón alcanzaba un estado cuántico específico (un conjunto de variables que incluye la energía que tiene el fotón), entonces existía una pequeña tendencia a que el siguiente fotón alcanzase el mismo estado. Es como si cada vez que golpeases una bola de billar americano hubiese más probabilidad de que fuese a la tronera (bolsillo) donde ya hay una bola.

Satyendra Nath Bose en 1925. Fuente: Wikimedia Commons

Bose había aplicado su estadística a un “gas” de fotones. Esto indujo a Einstein a considerar la aplicación de la estadística de Bose a un gas ideal de átomos o moléculas; Einstein quería ver qué pasaba cuando uno trataba con materia de verdad. Basándose en el trabajo de Bose, Einstein terminó deduciendo un conjunto de fórmulas que predecían cómo los átomos de un gas deberían comportarse, que resulta ser correcto para cierto tipo de partículas, entre ellas protones y neutrones, que ahora se conocen, apropiadamente, como bosones.

Como consecuencia de estas nuevas ideas surgía una predicción de lo que les ocurriría a los átomos a temperaturas extremadamente bajas, cercanas al cero absoluto. En 1925, Einstein descubrió que si a un gas se le baja la temperatura hasta aproximarla al cero absoluto, una temperatura a la que los átomos casi no se muevan, todos alcanzarán exactamente el mismo estado cuántico.

Volviendo a la mesa de billar, podemos imaginar que dejamos caer 20 bolas sobre la mesa y vemos cómo ruedan cada una hasta terminar en troneras diferentes. Esta clase de rodar aleatorio es lo que ocurre a temperaturas normales: cada átomo en un estado cuántico específico. Pero cerca del cero absoluto, esas bolas dejadas caer irían, una tras otra, a la misma tronera. En el cero absoluto, los átomos se “bloquean” en el mismo estado cuántico y van uno detrás de otro sin discusión. Se unen en un nuevo estado de la materia que se denomina condensado de Bose-Einstein. Todos los átomos en un condensado de Bose-Einstein pierden su identidad individual. Marchan al unísono, actuando como un solo superátomo. De hecho, los condensados de Bose-Einstein interaccionan entre sí como una partícula con otra: se repelen o atraen igual que los átomos individuales.

Einstein publicó su trabajo en dos artículos en 1925 [2][3], cuando tenía 46 años. No es habitual que un científico haga una contribución de este calibre en un campo completamente nuevo cuando ya tiene más de 40 años y, de hecho, esta fue la última gran contribución de Einstein a la física. Setenta años más tarde el condensado de Bose-Einstein fue observado experimentalmente en átomos de rubidio.

Referencias

[1] Bose, S.N . (1924). Plancks Gesetz und Lichtquantenhypothese Zeitschrift für Physik, 26 (1), 178-181 DOI: 10.1007/BF01327326

[2] Einstein, A. (1925). Quantentheorie des einatomigen idealen Gases.I Sitzungsberichte Akad. Berlin DOI: 10.1002/3527608958.ch27

[3] Einstein, A. (1925). Quantentheorie des einatomigen idealen Gases.II Sitzungsberichte Akad. Berlin DOI: 10.1002/3527608958.ch28

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Una versión anterior de este artículo se publicó en Experientia Docet el 23 de mayo de 2010.

El artículo Einstein y el condensado de Bose-Einstein se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Desmitificando: Los plásticos

Lun, 2022/03/28 - 11:59

Un mundo sin plásticos parece inimaginable en la actualidad, a pesar de que, como se menciona a menudo, su producción y uso a gran escala comenzó no hace mucho tiempo, hacia la década de los 50 del siglo pasado. Los plásticos son omnipresentes en la vida actual y están ampliamente dispersos en el medio ambiente. Los orígenes materiales e históricos de los plásticos siguen siendo oscuros, simplificados en exceso e incomprendidos, lo que da como resultado varios mitos. El repaso de Rebecca Altman, periodista científica del Washington Post, sirve para aclarar algunos de esos mitos.

plásticosFoto: Francesco La Corte / Unsplash

Publicaciones como National Geographic y Nature han señalado 1950 como el año en que comenzó la producción masiva de plásticos. Pero 1950, en realidad, marca el primer año en que se recogieron datos de fabricación global, según el estudio de Roland Geyer y sus colegas, de la Universidad de California en Santa Barbara. El primer plástico sintético, la baquelita, apareció en 1907 y todavía se utiliza en la carcasa de teléfonos fijos y de radios vintage.

¿Cuánto plástico hay?

La producción comercial de baquelita, el primer plástico sintético, comenzó en Alemania y en Estados Unidos en 1910. La Comisión de Aranceles de EE. UU. contó 1 millón de toneladas en 1921, aumentando a 15 millones en 1931, y a más de 60 millones unos años después.

Los datos del grupo de Roland Geyer, publicados  en su artículo de 2017, permiten calcular algunas cifras sobre la producción de plásticos. Hasta 2015, el total de la producción mundial acumulada había sido de 8300 millones de toneladas. Y ese año 2015 el total de basura plástica vertido desde 1950, era de 6300 millones de toneladas; solo el 9% había sido reciclado, el 12% incinerado y el 79% acumulado en vertederos o en el medio ambiente. Los autores calcularon que para 2050 cerca de 12000 millones de toneladas de basura de plásticos se habían tirado en el entorno.

Los datos de Geyer ayudaron al público a comprender la magnitud de los plásticos producidos: aproximadamente 2 millones de toneladas en 1950, lo que nos parece escaso en comparación con la actualidad. (En 2019 la producción mundial se acercó a los 368 millones de toneladas).

La Segunda Guerra Mundial aceleró aún más el crecimiento de los plásticos: los contratos de guerra ampliaron la infraestructura para los plásticos existentes (p. ej., acrílicos, fenólicos, PVC y poliestireno), y la Armada ayudó a DuPont y Union Carbide a obtener las licencias necesarias para comenzar la producción de polietileno (entonces una industria emergente), desarrollado en Inglaterra y Estados Unidos.

Como resultado, en la década de 1940, la producción en Estados Unidos aumentó más de seis veces. Este crecimiento ha quedado reflejado en los sedimentos marinos según el estudio de Jennifer Brandon y sus colegas, de la Universidad de California en San Diego. En muestras tomadas cerca de la costa de California, los plásticos y las fibras plásticas son aparecen incluso en las capas sedimentarias de antes de la guerra, creciendo después de 1945 a un ritmo en que se dobla la cantidad cada 15 años, a medida que los plásticos llegaron a los consumidores.

plásticosFoto: Michael Dziedzic / UnsplashLos plásticos son persistentes, no estáticos

Muchas publicaciones, incluida una de la NOAA, abordan el problema de estimar el tiempo que el plástico tarda en degradarse. Dicen, por ejemplo, que un vaso de plástico dura 50 años o una botella de plástico llega a los 450 años o una red de pesca a los 600 años o un pañal desechable a los 450 años.

Sin embargo, algunos expertos cuestionan la precisión de estas cifras pues la resistencia de los plásticos es una función de su entorno. Eso podría variar desde la superficie del mar brillante y salobre hasta el interior oscuro de un intestino rico en ácido, las capas subterráneas de paisajes terrestres o las profundidades presurizadas de una fosa de aguas profundas. Los plásticos son una clase diversa de contaminantes que contienen mezclas complejas de alrededor de 10 000 monómeros, aditivos y coadyuvantes de procesamiento diferentes, lo que dificulta estimar la longevidad, aunque grupos como Ali Chamas y sus colegas, de la Universidad de California en Santa Barbara, o Colin Ward y Christopher Reddy, del Instituto Oceanográfico de Woods Hole, llevan tiempo pidiendo más estudios y precisión en las cifras que se publican como definitivas.

Puede ser difícil afirmar con rotundidad que «los plásticos son para siempre«, como escribe en un artículo Bruce Gibb, de la Universidad Tulane de Nueva Orleans, aunque algunos se depositan en sedimentos y ya se recuperan como hallazgos arqueológicos. Muchos plásticos resisten la degradación pero no son estáticosLos encargados de los museos que preservan los artefactos plásticos saben muy bien que se decoloran, secan, agrietan, rompen, y pasan por cambios físicos, que incluyen, sobre todo, convertirse en partículas a escala micro e incluso nanométrica. Así se convierten en contaminantes persistentes, de larga vida, móviles y que se acumulan y entran en los sistemas y ciclos de la Tierra. Estos fragmentos también cambian químicamente, liberando lixiviados y productos de degradación que pueden actuar como disruptores endocrinos.

Para terminar, la contaminación plástica está más allá de la capacidad de remediación de los sistemas tecnológicos, escribe el experto en plásticos Max Liboiron, de la Universidad de Terranova y Labrador, en Canadá. La mayoría de los plásticos son fragmentos minúsculos que se distribuyen por debajo de la superficie del mar, en la atmósfera, o están enterrados en sedimentos o arenas costeras. Otros plásticos se han propagado a través de los sistemas de agua dulce o la tierra. Algunos expertos como Hans Peter Arp y su grupo, de la Universidad Noruega de Ciencia y Tecnología de Trondheim, proponen que los suelos pueden contener cantidades aún mayores de microplásticos que los océanos. Además de los propios plásticos, sus contaminantes asociados como ftalatos o retardantes de llama con bromo también están en muchos entornos. Todos ellos podrían interferir con la capacidad de la Tierra para albergar vida, como concluyen Arp y sus colegas.

Referencias

Altman, R. 2022. Five myths about plastics. Washington Post January 14.

Arp, H.P.H. et al. 2021. Weathering plastics as a planetary boundary threat: Exposure, fate, and hazards. Environmental Science & Technology 55: 7246-7255.

Brandon, J.A. et al. 2019. Multidecadal increase in plastic particles in coastal ocean sediments. Science Advances 5: eaax0587.

Chamas, A. et al. 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering 8: 3494-3511.

Geyer, R. et al. 2017. Production, use, and fate of all plastics ever made. Science Advances 3: e1700872.

 Gibb, B.C. 2019. Plastics are forever. Nature Chemistry 11: 394-395.

Ward, C.P. & C.M. Reddy. 2020. We need better data about the environmental persistence of plastic goods. Proceedings of the National Academy of Sciences USA 17: 14618-14621.

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

El artículo Desmitificando: Los plásticos se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Pulpos, una reproducción que les cuesta la vida

Dom, 2022/03/27 - 11:59

Eduardo Almansa Berro y Catalina Perales-Raya

PulposImagen submarina de un pulpo en su medio natural. Lugar: Islas Canarias. Foto: C. Perales-Raya.

 

Una vez en la vida, así se reproducen los pulpos. El pulpo común vive apenas un año, y su ciclo vital queda completado tras un único evento reproductivo.

No es algo único de los pulpos, sino una estrategia que sucede en la mayoría de las especies de cefalópodos, con la única excepción de los nautilos (se reproducen varias veces a lo largo de su vida, que puede durar más de 20 años).

La maduración sexual en cefalópodos es poco conocida aunque se sabe que está controlada por hormonas producidas en una parte del cerebro llamada glándula óptica.

Al igual que en muchos otros animales, esta glándula integra información sobre el crecimiento del animal, reservas corporales y factores ambientales como el fotoperíodo y la temperatura que permiten seleccionar el momento adecuado, tanto para iniciar la maduración como para depositar los huevos.

La hembra deja de comer y muere tras cuidar los huevos

Sin embargo, una característica que diferencia a los cefalópodos de la mayoría de los animales es que esta regulación está muy integrada con la regulación del apetito, hasta el punto de que la hembra deja de alimentarse una vez depositados los huevos, lo que conduce inevitablemente a su muerte por inanición tras cuidar de la puesta.

Esta especie de “suicidio programado” parece ocurrir también en los machos, pues una vez cumplida su edad máxima programada (normalmente un año o año y medio) también dejan de alimentarse.

Almacenan espermatóforos de varios machos

El cortejo en los cefalópodos se produce con ayuda de llamativos y elaborados cambios en su coloración y patrón corporal, aunque en el caso de los pulpos no suele haber tanto juego previo.

Los machos “empaquetan” el esperma en unas cápsulas llamadas espermatóforos, que son transferidas a la hembra gracias a la modificación de uno de sus brazos (hectocótilo).

En el pulpo común, el hectocótilo del macho se forma en el extremo del tercer brazo derecho y permite depositar los espermatóforos en la glándula oviductal de la hembra, donde permanecerá almacenada hasta que se den las condiciones adecuadas para la reproducción.

Observaciones llevadas a cabo en nuestro laboratorio han mostrado que las hembras son capaces de almacenar el esperma durante varios meses antes de usarlo para fecundar los ovocitos e iniciar la puesta.

Estudios genéticos han mostrado que una hembra puede almacenar esperma de varios machos, dando lugar a puestas con múltiple paternidad, aunque cada uno de ellos intentará eliminar los espermatóforos depositados por los machos anteriores.

Una progenie numerosa y huérfana

El cuidado y dedicación que la hembra de pulpo aplica a su puesta es otro comportamiento que no suele encontrarse en el reino animal.

Paralarva de pulpo común en el momento de la eclosión bajo luz polarizada. La ampliación total del microscopio es de 80X. Autor C. Perales-RayaParalarva de pulpo común en el momento de la eclosión bajo luz polarizada. Ampliación: 80X. Foto: C. Perales-Raya.

Las hembras cuelgan los huevos (varios cientos de miles) agrupados en racimos dentro en un lugar seguro. Normalmente utilizan un hueco u oquedad de la roca con el tamaño y oscuridad adecuados, pero pueden usar cualquier lugar con similares características, como algunas trampas para pulpo frecuentes en pesquerías artesanales dirigidas a esta especie.

Durante varias semanas la hembra protege los huevos de posibles depredadores, a la vez que los limpia con sus ventosas y los mantiene aireados y en movimiento mediante chorros de agua producidos con su sifón. Este proceso se ha conseguido replicar en laboratorio sin la presencia de la hembra.

La temperatura es fundamental y afecta tanto a la duración como a la calidad del desarrollo embrionario. Se ha observado que aumentos de temperatura compatibles con el cambio climático reducen la calidad de la puesta.

Detalle de la mandíbula de una paralarva de pulpo, bajo el microscopio electrónico. Foto: I. Molto y A. Lancha

Una vez terminado el desarrollo embrionario, eclosionan miles de pequeñas “paralarvas” de unos 2 mm de longitud, dotadas de mandíbulas (o picos) con dientes para cazar, y que viajarán en mar abierto llevadas por las corrientes oceánicas hasta su asentamiento final como juveniles.

Avances hacia una producción sostenible

El aumento de la demanda en el consumo de pulpo en el mundo se suma a otras amenazas sobre las poblaciones salvajes como la sobrepesca, la contaminación o el cambio climático. Todo ello ha llevado a la búsqueda de alternativas que garanticen una producción sostenible, entre las que se incluye el desafío afrontado en las últimas décadas: su producción acuícola.

El principal cuello de botella para conseguirlo han sido desde siempre las primeras fases de vida. En esos primeros momentos, es muy complejo conseguir que las paralarvas tengan alimentación y nutrición adecuadas. También tienen requerimientos especiales que tienen que ver con factores ambientales como la luz.

Siguiendo estas líneas de investigación, los últimos avances llevados a cabo por el Instituto Español de Oceanografía en sus centros de Vigo y Tenerife han permitido mejorar su cría en cautividad. Lograr su reproducción en cautividad abre la puerta a una mejor gestión de su producción para el consumo humano, tanto a nivel acuícola como pesquero, ya que también facilita el estudio de su biología y ecología.

No obstante, aún quedan importantes retos relacionados con una producción sostenible y que asegure el bienestar animal. Este ha sido en todo momento el objetivo de proyectos científicos de nuestro grupo OCTOWELF o la red europea CephsInAction. La producción sostenible y el bienestar animal han de seguir siendo un objetivo prioritario en futuros proyectos de investigación.The Conversation

Sobre los autores: Eduardo Almansa Berro es Científico Titular y Catalina Perales-Raya, Científica Titular, del Instituto Español de Oceanografía (IEO – CSIC)

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo Pulpos, una reproducción que les cuesta la vida se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Día de PI con BCAM NAUKAS 2022: Pablo Rodríguez Sánchez – Con matemáticas en los ojos

Sáb, 2022/03/26 - 11:59

matematicas en los ojos

La forma en la que se escribe el 14 de marzo en inglés y euskera coincide con los tres primeros dígitos de la famosa constante matemática: 3-14 martxoaren 14 en euskara / 3-14 March, 14th en inglés. En los últimos años, la conmemoración del Día de Pi se ha ido extendiendo, hasta tal punto que el 26 de noviembre de 2019 la UNESCO proclamó el 14 de marzo Día Internacional de las Matemáticas.

Un año más, el Basque Center for applied Mathematics-BCAM y la Cátedra de Cultura Científica de la UPV/EHU se han suamdo a la celebración, organizando la tercera edición del evento BCAM-NAUKAS, que se desarrolló a lo largo del 14 de marzo en el Bizkaia Aretoa de la UPV/EHU.

La visión humana es básicamente un conjunto de problemas matemáticos. Pablo Rodríguez Sánchez, que es matemático aplicado en el Netherlands eScience Center, nos lo cuenta en esta interesantísima charla.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Día de PI con BCAM NAUKAS 2022: Pablo Rodríguez Sánchez – Con matemáticas en los ojos se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Respuestas a preguntas en lenguaje natural, el nuevo paradigma de los buscadores basados en inteligencia artificial

Vie, 2022/03/25 - 11:59
lenguaje natural buscadores basados en inteligencia artificialVIGICOVID es un prototipo para extraer información mediante preguntas y respuestas en lenguaje natural de un conjunto actualizado de artículos científicos publicados por la comunidad investigadora mundial. Fuente: 123rf

La comunidad investigadora biosanitaria mundial está realizando un gran esfuerzo en la generación de conocimiento en torno a la COVID-19 y al SARS-CoV-2. Este esfuerzo se traduce en una producción ingente y muy rápida de publicaciones científicas, lo cual dificulta la consulta y el análisis de toda esa información. Por ello, resulta necesario proporcionar sistemas de información a las personas expertas y a las autoridades responsables en la toma de decisiones, que les permitan adquirir el conocimiento necesario.

Eso es, precisamente, lo que han desarrollado en el proyecto VIGICOVID un equipo de investigación del Centro HiTZ de la UPV/EHU, del grupo NLP & IR de la UNED y de la Unidad de Inteligencia Artificial en el ámbito lingüístico de Elhuyar, gracias a la financiación a través del Fondo Supera COVID-19 otorgada por la CRUE. Con la coordinación del grupo de investigación de la UNED, el resultado ha sido un prototipo para extraer información mediante preguntas y respuestas en lenguaje natural de un conjunto actualizado de artículos científicos publicados por la comunidad investigadora mundial en torno a la COVID-19 y el SARS-CoV-2.

“El paradigma de las búsquedas de información está cambiando gracias a la inteligencia artificial. Hasta ahora, para buscar información en la red, se introduce una pregunta, y la respuesta se debe buscar en los documentos que nos muestra el sistema. Sin embargo, en función del nuevo paradigma, cada vez están más extendidos los sistemas que ofrecen directamente la respuesta, sin necesidad de leer todo el documento”.

Eneko Agirre, director del Centro HiTZ de la UPV/EHU

En este sistema, “la persona usuaria no solicita la información mediante palabras clave, sino que formula directamente una pregunta”, explica el investigador de Elhuyar Xabier Saralegi. El sistema busca las respuestas a esa pregunta en dos fases: “En primer lugar, recupera los documentos que pueden contener la respuesta a la pregunta realizada, utilizando una tecnología que combina palabras clave y preguntas directas. Para eso hemos investigado arquitecturas neuronales”, añade el doctor Saralegi. Han utilizado arquitecturas neuronales profundas alimentadas con ejemplos: “Eso significa que los modelos de búsqueda y los modelos de respuesta a las preguntas se entrenan a través del aprendizaje automático profundo”.

Una vez extraída la serie de documentos, se vuelven a procesar mediante un sistema de preguntas y respuestas, para así obtener respuestas concretas: “Hemos construido el motor que responde a las preguntas; proporcionándole una pregunta y un documento, el motor es capaz de detectar si la respuesta se encuentra o no en el documento, y en caso afirmativo, dice exactamente dónde se encuentra”, explica el doctor Agirre.

Un prototipo fácilmente comercializable

Los investigadores creen que los resultados obtenidos son muy prometedores: “De las técnicas y las evaluaciones que hemos analizado en nuestros experimentos, hemos llevado al prototipo aquellas que han dado mejores resultados”, señala el investigador de Elhuyar. Han establecido una base tecnológica sólida, y han publicado varios artículos científicos al respecto. “Hemos conseguido otra manera de realizar búsquedas para casos de necesidad de información urgente, que facilita el proceso de consumo de información. A nivel de investigación hemos demostrado que la tecnología propuesta funciona, y que el sistema da buenos resultados”, apunta Agirre.

“Nuestro resultado es un prototipo de un proyecto de investigación básica. No se trata de un producto comercial”, destaca Saralegi. Pero este tipo de prototipos se puede escalar fácilmente y en poco tiempo, lo que permitiría comercializarlos y ponerlos al alcance de la sociedad. Los resultados abundan en la tendencia de que la inteligencia artificial permitirá disponer de instrumentos cada vez más potentes para trabajar con grandes bases de documentos. “Estamos avanzando muy rápidamente en este ámbito. Y, además, todo lo que se investiga llega fácilmente al mercado”, concluye el investigador de la UPV/EHU.

Referencia:

Arantxa Otegi, Iñaki San Vicente, Xabier Saralegi, Anselmo Peñas, Borja Lozano, Eneko Agirre (2022) Information retrieval and question answering: A case study on COVID-19 scientific literature Knowledge-Based Systems doi: 10.1016/j.knosys.2021.108072

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo Respuestas a preguntas en lenguaje natural, el nuevo paradigma de los buscadores basados en inteligencia artificial se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

El mapa de historias de las estrellas

Jue, 2022/03/24 - 11:59

El primer sistema de clasificación estelar del Observatorio de Harvard atendía principalmente a su color. Fue definido por la astrónoma Annie Jump Canon y utilizaba siete letras (OBAFGKM) que, según se supo más tarde, identificaban la temperatura de las estrellas. Sin embargo, pronto resultó evidente que aquel catálogo unidimensional resultaba insuficiente para representar la diversidad del cielo nocturno y Antonia Maury fue la primera astrónoma que se atrevió a ampliarlo. Reparó en que las líneas espectrales de algunas estrellas estaban mucho más definidas que otras. Aunque en un primer momento el origen de aquellas diferencias no estaba claro, su apreciación permitió añadir una segunda dimensión al catálogo astronómico de Harvard. Y fue entonces cuando todas las piezas empezaron a encajar. Como un mapa que se despliega y revela rutas insospechadas, las estrellas empezaron a dibujar sus historias sobre el papel.

Esto es precisamente lo que representa el diagrama Hertzsprung-Russell. Se trata de un mapa de historias estelares, la foto de los caminos que comparten. En él, las estrellas aparecen representadas en función de su color (en horizontal) y su magnitud absoluta (en vertical). Las letras del sistema de Harvard sirven para graduar el eje horizontal, mientras que el eje vertical es el que ayudó a descubrir Maury.

Resultó que las diferencias que había observado en las líneas espectrales de las estrellas dependían, precisamente, de su luminosidad. En concreto, cuando una estrella es más densa y tiene más presión en su atmósfera, presenta un ensanchamiento de las líneas espectrales correspondientes al gas que se encuentra en su superficie. Existen otros factores que pueden producir este efecto, como la abundancia de cierto elemento químico, por ejemplo, no es un puzzle que se pueda resolver a partir de una única variable. Pero aquella observación fue la primera pista que más tarde permitiría identificar diferencias en la gravedad, la densidad y la presión atmosférica de una estrella, en función de su espectro.

mapa historias estrellasDiagrama de Hertzsprung-Russell. Fuente: Wikimedia Commons

Un mapa de historias

¿Pero por qué digo que este diagrama es un mapa de historias? Bien, resulta que no todas las estrellas tienen el mismo ciclo de vida. Todas nacen, se consumen y mueren, pero lo que les sucede en el camino y el modo en que finalmente desaparecen depende crucialmente de su masa. De hecho, cuando uno representa las estrellas en función de su magnitud y su temperatura, es fácil ver que no se distribuyen al azar. La mayoría se sitúan sobre ciertas líneas o ramas.

Son estas líneas las que nos cuentan su evolución y las que recoge el sistema de clasificación de Yerkes. Se trata de un sistema de clasificación que fue introducido en 1943 por William Wilson Morgan, Philip C. Keenan y Edith Kellman (se lo conoce también como MKK, por las siglas de estos autores) y cataloga las estrellas en varios tipos y subtipos situados sobre distintas ramas sobre el diagrama.

En el extremo superior, por ejemplo, encontramos las estrellas hipergigantes (tipo 0). Son las estrellas más luminosas que existen, al menos 30 veces más masivas que el Sol y son extremadamente raras. Queman combustible a una gran velocidad, hasta que colapsan bajo su propio peso y estallan en forma de supernova. Con semejante ritmo de vida, son estrellas con una esperanza de vida muy corta (corta para una estrella, se entiende). Mueren tras unos pocos millones de años, cerca de su lugar de formación, y pueden dejar como remanente un agujero negro tras de sí. Nuestro Sol, por comparación, vivirá miles de millones de años.

En el extremo opuesto encontramos las enanas blancas. Su historia es muy diferente. Suelen ser el núcleo inerte de estrellas viejas que han agotado sus fuentes de energía. Como ya han alcanzado pacíficamente la jubilación, estas estrellas se enfrían lentamente a lo largo de miles de millones de años moviéndose hacia la derecha del diagrama.

De entre todas las estrellas, las más frecuentes son las estrellas enanas (tipo V) que dan forma a la línea más visible del diagrama Hertzsprung-Russell. Se trata de la secuencia principal, que acoge a nuestro propio Sol desde hace 4500 millones de años y que lo seguirá haciendo durante al menos otro 4500 millones más. Sobre esta rama se encuentra la infancia de todas las estrellas, la época inicial de su vida donde se alimentan principalmente de hidrógeno. Pero hablaremos de ellas con más detalles en la próxima y última entrada de esta serie.

mapa historias estrellasEvolución de las estrellas a lo largo de la Secuencia Principal. Fuente: Wikimedia Commons.

 

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo El mapa de historias de las estrellas se ha escrito en Cuaderno de Cultura Científica.

Categorías: Zientzia

Páginas