Suscribirse a canal de noticias Cuaderno de Cultura Científica
Un blog de la Cátedra de Cultura Científica de la UPV/EHU
Actualizado: hace 1 hora 45 mins

Actúa localmente: tranvías eléctricos sin catenaria

Mar, 2021/04/20 - 11:59

El comportamiento de los océanos, la atmósfera, la superficie terrestre, la criosfera, la biosfera y el clima ya no es el mismo que ha caracterizado durante más de 11.000 años la época geológica en la que formalmente aún vivimos, el Holoceno. La especie humana ha cambiado el planeta Tierra.

Tanto es así, que el hecho de que podamos afectar de modo tan significativo el curso de la evolución geológica de nuestro planeta dio pie en 2009 a la creación del Grupo de Trabajo sobre Antropoceno para examinar la posibilidad de la formalización e inclusión de un nuevo término en la Tabla Cronoestratigráfica Internacional (conocida como la Escala del Tiempo Geológico), el Antropoceno.

Desde el punto de vista climático, el rápido aumento de los gases de efecto invernadero desde el siglo XIX ha provocado un creciente ascenso de la temperatura y del nivel del mar, acompañados por una pérdida de hielo en los continentes. Este calentamiento ha alcanzado ya niveles más altos que los detectados durante el Holoceno y se acerca a los de otras etapas interglaciares del periodo Cuaternario.

La evidencia de que es necesario empezar a actuar ya para ralentizar, si no revertir, los múltiples efectos perniciosos del cambio climático cristalizó hace ahora 5 años a nivel diplomático en en el llamado Acuerdo de París. Independientemente de ello, la consciencia ciudadana es la que está llevando a instituciones, gobiernos y empresas a adoptar medidas para reducir las emisiones de gases de efecto invernadero.

Aunque muchas veces se suele confundir en los medios de comunicación, cambio climático y contaminación no son la misma cosa. Quizás se deba a que los grandes medios residan en grandes ciudades y mezclan churras con merinas. Pero no es así. Por ejemplo, el cambio climático afecta a la aldea de mis ancestros en el norte de Salamanca, pero allí solo saben de la contaminación que es una cosa que está en Madrid, como el Bernabéu.

Con todo, en las grandes ciudades lucha contra la contaminación y lucha contra el cambio climático son la misma porque tienen la misma fuente: los motores de combustión de vehículos y las calderas de calefacción. La solución a ambos problemas pasa por el desarrollo de acumuladores de energía: en el primer caso como baterías de automóviles en sentido amplio y, en el segundo como acumuladores para, por ejemplo, paneles solares.

En las grandes ciudades el transporte público no contaminante y no emisor de gases de efecto invernadero es fundamental no solo para el cambio climático y la salud de la ciudadanía, también para la salud de los monumentos de la ciudad. Los requisitos no paran ahí. Si uno quiere un nuevo medio de transporte seguro, fiable, no contaminante y no emisor de gases de efecto invernadero, ¿por qué no añadirle además que no haga ruido y que no altere el entorno con estructuras permanentes?

Yo trabajaba en Sevilla cuando se estaban realizando las obras del llamado metro de Sevilla, un metro que en el centro de la ciudad circula en superficie. De vez en cuando los compañeros íbamos a tomar tapas a una cantina minúscula pero con excelente cocina de la zona de la catedral e, invariablemente, uno de nosotros, ingeniero por más señas, decía al ver las obras: “a ver que se inventan para las catenarias”. No hay catenarias en el metro de Sevilla en su zona monumental, y es eléctrico. Va con baterías, pero no unas cualquiera.

El desarrollo de unas baterías capaces de mover un tren durante kilómetros (más de 130 km al día, en el caso de Sevilla), con arranques y paradas, con frío en invierno (calefacción) y un calor achicharrante en verano (aire acondicionado), no es nada fácil. Dos entidades vascas colaboran en crear nuevos acumuladores que cumplan todos estas demandas: CIC energiGUNE, en los aspectos más de investigación, y CAF Power & Automation en los de desarrollo. El resultado puede apreciarse en este vídeo:

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Actúa localmente: tranvías eléctricos sin catenaria se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Actúa localmente: impresión 3D de piezas aeronáuticas de titanio
  2. Actúa localmente: robots inteligentes autoadaptativos para la producción industrial
  3. Actúa localmente: huesos a partir de ARN modificado e impresoras 3D
Categorías: Zientzia

¿Somos la especie más inteligente del planeta?

Lun, 2021/04/19 - 11:59

Paul Palmqvist Barrena

Encéfalo de la Capilla Sistina. Fuente: Flickr / Tom Blackwell

Paul Palmqvist Barrena, Universidad de Málaga

A primera vista, la respuesta a esta pregunta parece sencilla. Somos la única especie que se plantea estas cuestiones, por lo que nuestra capacidad cognitiva debe rebasar con creces la de los restantes animales, ¿verdad?

Ahora bien, no deberíamos abordar el tema sin formular antes otra cuestión: ¿cómo podemos definir –y medir– la inteligencia? Según observó Homero en el libro octavo de la Odisea, “la inteligencia es un regalo de la gracia que no todos los hombres poseen”. Y aunque esta afirmación sigue siendo válida hoy día, la verdad es que no nos aclara el asunto.

Ya en la década de los años veinte del siglo pasado, el psicólogo experimental Edwin Boring opinaba que “inteligencia es lo que miden los tests de inteligencia”. En los setenta, Ulric Neisser, considerado el padre de la psicología cognitiva, escribía que “inteligencia es la suma de los atributos de una persona prototípicamente inteligente”.

Aun suponiendo un razonamiento circular, la última definición goza de cierto consenso: presumimos de saber qué personas son inteligentes y, en consecuencia, aceptamos como medida de su inteligencia lo que nos permite identificarlas.

Es frecuente que los genios se reconozcan, admiren y respeten, aunque provengan de disciplinas diferentes. Fue el caso de Buñuel, Dalí y Lorca, entre otros exponentes de la Edad de Plata de la cultura española, al coincidir en la madrileña Residencia de Estudiantes.

Los tests de inteligencia

Los tests de inteligencia nacieron a comienzos del siglo XX gracias al trabajo del pedagogo Alfred Binet y el psiquiatra Théodore Simon. Diseñados con la vocación de identificar alumnos con dificultades de aprendizaje, se convirtieron rápidamente en un sistema estándar para medir la inteligencia.

Ahora bien, a diferencia de otras magnitudes físicas, como el peso o la altura, la inteligencia no consta de una única dimensión. Esto hizo necesario diseñar baterías de tests para evaluar diversas funciones cognitivas. Por ejemplo, factores de inteligencia verbal, razonamiento analógico y visualización espacial.

Al correlacionarse bien las puntuaciones en estos factores y ser estables con la edad, se pensó que podrían medir un “factor general de inteligencia” subyacente, como intentaron el test Stanford-Binet o la escala de inteligencia para adultos de Wechsler.

Algunos de los aspectos que miden los tests son intrínsecos a los individuos: el caso de la memoria a corto plazo, la capacidad de razonamiento deductivo o la habilidad para detectar y manipular patrones en diseños geométricos y espaciales. En cambio, otros no están libres de influencias culturales, como los que tratan del conocimiento del mundo y el uso de vocabulario.

De hecho, no podemos entender la inteligencia humana fuera de su contexto cultural y ambiental.

Por ejemplo, el corredor de bolsa que triunfa en el entorno agresivo de Wall Street y el cazador-recolector bosquimano que sobrevive en el inhóspito desierto del Kalahari son prototipos de personas inteligentes y bien aclimatadas. Pero si intercambiasen sus vidas, el resultado previsible sería desastroso, como mostraba la película “Los dioses deben estar locos”. Al fin y al cabo, los “rasgos adaptativos” que asociamos a sus inteligencias tienen poco sentido fuera de sus respectivos entornos culturales.

La inteligencia en el Reino Animal

Existen organismos con notables habilidades cognitivas, tanto comparados con otros de su grupo como por su capacidad de resolver situaciones ajenas a su medio natural. Es el caso de los simios, los delfines, los elefantes, las hienas, los cuervos, los loros y las lechuzas. Todos ellos destacan por su desarrollo cerebral y por sus relaciones sociales complejas.

Entre los invertebrados llaman la atención sobre todo los pulpos y algunos himenópteros, como las hormigas, en las que conviene distinguir entre inteligencia “individual” y “colectiva”.

Cerebros de hormigas e inteligencia colectiva

El cerebro de una hormiga tiene unas 250 000 neuronas, cifra minúscula en comparación con los cien mil millones que alberga un cerebro humano. Pese a ello, sus colonias muestran comportamientos muy elaborados. Tanto, que desarrollaron la agricultura (jardines de hongos subterráneos) y la ganadería trashumante (pastoreo de pulgones) millones de años antes que la humanidad.

En particular, las especies guerreras esclavistas muestran tácticas de combate y decisiones estratégicas tan complejas como en los ejércitos humanos. El estudio de sus movimientos ha permitido desarrollar algoritmos matemáticos que simulan estrategias óptimas en el campo de batalla.

Esto nos lleva a plantearnos hasta qué punto emerge una “inteligencia colectiva superior” de la suma de comportamientos individuales de las hormigas, que funcionan como autómatas en respuesta a instrucciones químicas (feromonas) e interacciones sociales muy sencillas.

En el caso humano –a diferencia de los insectos sociales– habría que sumar el componente de maduración de los mecanismos cognitivos. La integración de los conocimientos y experiencias pasadas determina y condiciona nuestro aprendizaje. Parafraseando a Marie von Ebner-Eschenbach, “en la juventud aprendemos, mientras que en la madurez comprendemos”, algo extensible a simios, delfines y elefantes.

El coeficiente de encefalización

El tamaño del encéfalo ha recibido mucha atención por los antropólogos y zoólogos dada su correlación con el repertorio de habilidades cognitivas que observamos en el Reino Animal. Ahora bien, no se trata de sus dimensiones absolutas, sino de su relación alométrica con el tamaño de los animales.

El especialista en neurociencias Harry Jerison fue pionero en los setenta al estimar dicha relación mediante el ajuste por regresión entre los logaritmos de las masas corporal y cerebral en los vertebrados. Su enfoque comparativo, que se muestra para los mamíferos en la gráfica adjunta, estableció el ritmo al que aumentan las dimensiones del encéfalo según lo hace el tamaño del cuerpo.

Esto permitió estimar el volumen cerebral esperable por unidad de masa corporal. Y así, calcular el coeficiente de encefalización de cada especie a partir del cociente entre masa cerebral observada y estimada en el ajuste.

Coeficiente de encefalización en 1327 especies de mamíferos, identificadas según órdenes (leyenda en la parte superior derecha). Se muestran los valores numéricos obtenidos para diversas especies al dividir sus masas cerebrales por las estimadas con el ajuste. Figura elaborada por el autor a partir de datos recopilados de la bibliografía.

En la figura se aprecia que los primates, el orden de mamíferos al que pertenecemos, tienden a situarse por encima de la recta de regresión. Esto indica que sus cerebros son de mayor tamaño que los de otras especies de masa similar.

Igual ocurre con los cetáceos que conservan los dientes (odontocetos). Por el contrario, los que tienen barbas para filtrar (misticetos) presentan encéfalos comparativamente reducidos, como se aprecia en la ballena azul (Balaenoptera musculus), el animal más grande de la Tierra. En ella, el coeficiente de encefalización toma el valor 0,08 (esto es, el volumen de su cerebro es solo el 8% del esperable para un animal de su tamaño).

Nuestra especie (Homo sapiens) presenta la encefalización más elevada entre los mamíferos, con un cerebro 6,4 veces mayor del calculado para una especie de nuestras dimensiones. Las siguientes son la falsa orca (Pseudorca crassidens, 4,9) y el delfín gris de río (Sotalia fluviatilis, 4,4).

Curiosamente, los hominoideos (chimpancés, gorilas y orangutanes), nuestros parientes vivos más próximos, no presentan los valores más altos de encefalización entre los primates. Este puesto corresponde a dos especies americanas: el capuchino de frente blanca (Cebus albifrons, 3,8) y el mono ardilla (Saimiri sciureus, 3,3).

Entonces, ¿se trata solo de tener un cerebro muy grande o hay algo más? El cerebro humano, una versión a mayor escala del de otros primates, presenta una densidad neuronal muy superior a la de un roedor. Concretamente 7,5 veces más neuronas por gramo de tejido cerebral y 12,5 veces más en el córtex prefrontal, donde se localizan las funciones cognitivas superiores.

Tenemos, pues, un cerebro con 100 000 millones de neuronas densamente empaquetadas, acompañadas por un billón de células gliales y enlazadas por 1 000 billones de conexiones sinápticas.

Nuestra arquitectura cerebral explica por qué somos la especie más inteligente del planeta, algo que debería imponernos más racionalidad en la gestión de sus recursos naturales y su biodiversidad. En eso, al menos hasta ahora, no hemos sido lo suficientemente “listos” y responsables.The Conversation

Sobre el autor: Paul Palmqvist Barrena es catedrático de paleontología de la Universidad de Málaga

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿Somos la especie más inteligente del planeta? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La evolución nos dice que es probable que seamos la única vida inteligente del universo
  2. ¿Jugar al ajedrez te hace más inteligente? Un vistazo a las pruebas
  3. ¿Por qué somos supersticiosos?
Categorías: Zientzia

En el control de la inteligencia artificial nos jugamos el futuro

Dom, 2021/04/18 - 11:59

Antonio Diéguez Lucena

Foto: Conor Luddy / Unsplash

 

Los avances en inteligencia artificial (IA) y en biotecnología, exacerbados en la imaginación popular por el discurso transhumanista, han propiciado que la gobernanza de la tecnología se haya convertido en un problema ineludible en la agenda política. Quizás ya no suene melodramático decir que se trata de un asunto en el que nos jugamos el futuro.

Seguimos, sin embargo, con instituciones y sistemas regulatorios que, a lo sumo, son funcionales en relación con la tecnología de la tercera revolución industrial (revolución digital e informacional), pero que resultan obsoletos para regular las tecnologías de la cuarta (unión de tecnologías digitales, particularmente la IA y las redes de sistemas inteligentes, la robótica, el internet de las cosas, las tecnologías de nuevos materiales, la nanotecnología y las biotecnologías). Esta revolución, a juicio de importantes analistas, ha comenzado ya.

Como bien explica el filósofo Luciano Floridi en su libro The fourth revolution, el reto que tenemos ante nosotros no es tanto el que puedan presentar las innovaciones tecnológicas como tales, sino el que plantea la propia gobernanza de lo digital. Sin embargo, buena parte de la sociedad parece no tomarse demasiado en serio este problema. Algunos legisladores y expertos son conscientes de la magnitud del desafío, pero hay dudas razonables de que puedan ejercer una influencia decisiva en el plano legal e institucional con la premura que sería exigible.

¿De verdad existe una inteligencia artificial?

Hasta el presente, todos los logros en el campo de la inteligencia artificial han sido en el desarrollo de lo que se conoce como “inteligencia artificial particular”, específica o estrecha. Es decir, en la creación de sistemas computacionales que despliegan una gran capacidad, superior incluso a la humana, para realizar tareas muy específicas y bien definidas. Por ejemplo, jugar a un juego con reglas fijas (ajedrez, go, damas, videojuegos), responder a preguntas de cultura general, realizar diagnósticos médicos precisos (enfermedades infecciosas, tipos de cáncer, medicina personalizada), reconocer caras y otras imágenes, procesar e interpretar la voz humana, traducir de un idioma a otro.

En realidad, una parte sustancial de lo que hoy llamamos inteligencia artificial son sistemas de minería de datos, llamados así porque son capaces de analizar cantidades masivas de datos y obtener de ellos patrones desconocidos y lo que podríamos considerar como conocimiento nuevo sobre esos datos.

Por impresionantes que sean estos logros, estas tecnologías no alcanzan la versatilidad y flexibilidad de la inteligencia humana. Los sistemas más inteligentes de los que disponemos en la actualidad no pueden ser utilizados con eficacia en tareas diferentes a aquellas para las que fueron programados. Hay quienes piensan que ni siquiera los deberíamos llamar inteligentes, puesto que la única inteligencia que aparece en ellos es la del programador humano o la de los seres humanos en cuyo contexto social estos sistemas cumplen alguna función.

Se suele decir que una máquina es inteligente cuando es capaz de realizar tareas tales que asumimos que requieren de inteligencia para ser llevadas a cabo. Esta es una definición operativa, puesto que considera que la inteligencia artificial se caracteriza como inteligente por sus resultados. No obstante, la propia caracterización de la inteligencia es un viejo problema cuya discusión continúa. No es fácil dirimir la cuestión, por lo que no es extraño que tampoco haya acuerdo sobre cómo definir la propia inteligencia artificial.

Aceptemos, sin embargo, que en un sentido no meramente metafórico podemos hablar de inteligencia artificial. ¿Debemos entonces temer la creación de una Inteligencia Artificial General (IAG)? ¿Tendremos máquinas superinteligentes que tomarán el control de todo el planeta o seremos capaces de controlarlas nosotros? Son preguntas que se repiten a menudo cuando se menciona el futuro de la IA en los medios de comunicación y en los libros de divulgación, y creo que merecen ser tomadas en serio.

La inteligencia artificial ya es un desafío

No conviene olvidar que, con independencia de si el desarrollo futuro de una inteligencia superior a la humana pudiera representar un peligro para la supervivencia de nuestra especie, lo que por el momento constituye un desafío desde el punto de vista de la salvaguarda de los derechos de las personas son ciertas aplicaciones de la IA cuyos efectos se están viendo ya, como es el caso del uso de nuestros datos personales por parte de sistemas de IA pertenecientes a las grandes empresas tecnológicas, cuyo poder a su vez se acrecienta aceleradamente, o los sesgos y opacidad de los algoritmos usados en la toma de decisiones importantes para la vida de las personas, como la contratación de personal en las empresas o la concesión de créditos bancarios.

Mención aparte merecen los peligros del uso de la IA en la identificación de rostros y en la búsqueda de delincuentes y prevención del delito, en la vigilancia y represión de disidentes políticos, en la creación de armas autónomas, o en la proliferación de los ciberataques, de las noticias falsas y de la desestabilización política mediante la desinformación.

Digamos también, para no dejar una imagen completamente negativa, que la IA está siendo un instrumento muy eficaz en la persecución de delitos financieros, en la protección de la seguridad de las personas, en la potenciación del progreso biomédico, en el logro de una mayor eficiencia energética y en la protección el medio ambiente.

Creo que, para analizar las consecuencias posibles de la inteligencia artificial, tanto favorables como desfavorables, discutir si se trata de inteligencia genuina, similar a la humana, con posibilidad de ser consciente o no, es desviar el foco del auténtico problema.

Lo que me parece que debería preocuparnos ahora no es si podremos crear inteligencia similar a la humana o superior, sino qué podrán hacer con nosotros las máquinas que creemos en el futuro, si es que estas tienen capacidad para tomar decisiones que se consideren en la práctica como inapelables en su autoridad. No es cómo piensen esas máquinas lo que importa, es cómo actúen, puesto que serán agentes con una cierta autonomía, y, sobre todo, cómo las insertaremos en nuestra ordenación social.

Lo relevante en todo esto será que los seres humanos acepten sin supervisión las decisiones que forjen dichas máquinas, así como las consecuencias que esas decisiones puedan tener sobre nuestras vidas, sobre todo si el propio ser humano cede el control.

En definitiva, es necesario promover instituciones y procedimientos que faciliten la defensa de los derechos de los ciudadanos frente a los riesgos potenciales de la inteligencia artificial, como, por ejemplo, la defensa del derecho a la privacidad, así como comenzar a pensar en los requisitos que serían fundamentales para un control efectivo de la IA, porque frente a lo que algunos nos dicen, no hay a priori ninguna razón incontestable para aceptar que el problema del control de la IA sea irresoluble.The Conversation

Sobre el autor: Antonio Diéguez Lucena es catedrático de Lógica y Filosofía de la Ciencia en la Universidad de Málaga

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo En el control de la inteligencia artificial nos jugamos el futuro se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La búsqueda de la inteligencia artificial, en la próxima zientziateka
  2. Máquinas inteligentes (II): Inteligencia artificial y robótica
  3. La búsqueda de la inteligencia artificial
Categorías: Zientzia

Eva Ferreira – Naukas Bilbao 2019: Hacer predicciones es muy difícil, sobre todo las del futuro

Sáb, 2021/04/17 - 11:59
Eva Ferreira. Foto: Iñigo Sierra

Hacer predicciones cuando en ellas las personas son un factor importante, se puede llegar a hacer muy complicado. Las personas no somos cometas. ¿Quién le hubiera dicho a Eva Ferreira cuando dio esta charla en 2019 que en 2021 iba a ser la rectora de la UPV/EHU?

Eva Ferreira es matemática de formación y catedrática de economía aplicada y profesora de estadística en la Facultad de Ciencias Económicas y Empresariales de la UPV/EHU.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo Eva Ferreira – Naukas Bilbao 2019: Hacer predicciones es muy difícil, sobre todo las del futuro se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Raúl Ibáñez – Naukas Bilbao 2019: Teorías fantásticas sobre las grafías de los números
  2. Naukas Bilbao 2017 – Raúl Gay: Todo sobre mi órtesis
  3. Clara Grima – Naukas Bilbao 2019: Mathematical Rhapsody
Categorías: Zientzia

ADN nuclear de varios individuos neandertales a partir de sedimentos

Vie, 2021/04/16 - 11:59
© Javier Trueba. Madrid Scientific Films

La menos conocida de las galerías de la Cueva Mayor en la Sierra de Atapuerca es la llamada Galería de las Estatuas. El nombre le viene de unas grandes estalagmitas que se formaron allí gota a gota hace más de un millón de años. A esas formaciones calcáreas se les atribuía la capacidad de hablar y aparecen en crónicas antiguas haciendo profecías. En la “Descripción de la Cueva llamada de Atapuerca” de los ingenieros Sampayo y Zuaznávar (1868) pueden verse grabados de las “estatuas”.

Ilustración de la Sala de las Estatuas publicada en «Descripción con planos de la cueva llamada de Atapuerca» (Sampayo y Zuaznávar, 1868).

Esta galería se comunicaba con el exterior en la época de los neandertales, pero luego la boca se rellenó y la cavidad quedó aislada, de manera que cuando llegaron los H. sapiens a Atapuerca ya no pudieron entrar y ver las viejas columnas. A este lugar se accede ahora por el interior de la Cueva Mayor.

Finalmente, sobre el lugar donde habían vivido los neandertales se formó un suelo estalagmítico, es decir, una gruesa plancha de calcita, que selló para siempre el yacimiento.

En las excavaciones que se realizan desde el año 2008 en la Galería de las Estatuas se han recuperado restos de los animales consumidos por los neandertales y sus herramientas líticas, además de una falange de pie indiscutiblemente neandertal.

Debido a su total aislamiento, los sedimentos del yacimiento de la Galería de las Estatuas han mantenido constantes sus condiciones de humedad y de temperatura y no han sufrido ninguna alteración por agentes naturales o por intervenciones humanas modernas, lo que hace de Estatuas el yacimiento perfecto para excavar.

El equipo de Atapuerca mantiene una colaboración de años con Matthias Meyer, investigador senior del grupo de genética evolutiva del Instituto Max Planck de Antropología Evolutiva que dirige Svante Pääbo (Premio Princesa de Asturias) en Leipzig. Esta larga colaboración ha producido resultados espectaculares en el yacimiento de la Sima de los Huesos, que también se localiza en la Cueva Mayor. El ADN mitocondrial y el ADN nuclear humanos más antiguos se han recuperado en la Sima de los Huesos a partir de fósiles.

El ADN mitocondrial se encuentra en las mitocondrias, que son unos orgánulos que producen la energía de la célula. Es más fácil secuenciar completo el ADN mitocondrial que el ADN nuclear porque hay muchas mitocondrias en cada una de las células del cuerpo, y porque su longitud es de solo 16.000 pares de bases (las “letras” de la secuencia de ADN). El ADN nuclear es el de los cromosomas. Solo se encuentra en el núcleo celular y es mucho más largo: 3.200 millones de pares de bases. El ADN mitocondrial se trasmite solo por vía materna, mientras que el ADN nuclear se trasmite por vía paterna y materna. Estas razones hacen que el ADN nuclear sea mucho más informativo que el mitocondrial, pero al mismo tiempo enormemente más difícil (y costoso) de secuenciar.

© Javier Trueba. Madrid Scientific Films

Recientemente, el equipo dirigido por Matthias Meyer ha explorado la posibilidad de obtener ADN directamente de los sedimentos, sin necesidad de tomar muestras en huesos humanos, que faltan en la mayoría de los yacimientos. En un artículo anterior se demostró que era posible recuperar ADN mitocondrial de los sedimentos, pero faltaba conseguirlo con el ADN nuclear.

La temperatura es un factor de primer orden en la conservación de la molécula de ADN: a mayor temperatura, mayor degradación de la molécula. Por eso, cuanto más al norte esté el yacimiento, mejor será la conservación.  Siberia es el lugar ideal para recuperar ADN antiguo pero, por sus especiales características, la Galería de las Estatuas ofrecía una oportunidad única de obtener ADN procedente del sedimento en una región situada en latitudes templadas.

En el artículo que se publica en Science, liderado por Benjamin Vernot, del equipo de Matthias Meyer, se informa de la obtención de ADN mitocondrial y ADN nuclear en dos yacimientos de los montes Altai en Siberia (cuevas Denisova y Chagyrscaya), y también en la Galería de las Estatuas de la Cueva Mayor. Esta publicación puede sin lugar a dudas calificarse de histórica, porque abre de par en par la puerta a futuras investigaciones. Ya no hacen falta fósiles humanos para identificar a los moradores de una cueva prehistórica.

Siempre, claro está, que las condiciones de conservación sean tan buenas como las de la Galería de las Estatuas… y siempre que la excavación se haga de forma extremadamente cuidadosa para que no se alteren esas condiciones. Y en efecto, en Estatuas se ha excavado todos estos años pensando en esa posibilidad, por lo que se ha renunciado a desobstruir la entrada de la Galería y comunicarla con el exterior. Esta estrategia de excavación, la de acceder al yacimiento realizando un largo recorrido por el interior de la cueva, ha hecho que la tarea sea más complicada, pero el artículo de Science demuestra que ha merecido la pena el esfuerzo. Desde el año 2020 se excava también la parte del yacimiento que quedó al otro lado del “tapón” de la entrada, en lo que ahora es la ladera de la sierra, con resultados muy interesantes.

© Javier Trueba. Madrid Scientific Films

¿Qué nos dice el ADN de los neandertales de la Galería de las Estatuas? Para empezar se ha recuperado en los sedimentos tanto ADN nuclear como ADN mitocondrial de varios individuos. El ADN del individuo más antiguo perteneció a un varón neandertal de raigambre antigua. Está datado en aproximadamente 110.000 años, pero su estirpe se originó antes, hace unos 130.000 años. La fecha que se ha calculado para esa “radiación” (que es como se llama técnicamente a un conjunto de líneas que se separan de un antepasado común) coincide con el inicio del último periodo cálido entre dos glaciaciones. Puede que la radiación y la mejoría climática tengan algo que ver, porque los grandes cambios ambientales producen grandes cambios ecológicos, que afectan a la evolución de muchas especies.

Falange neanderthal. © Javier Trueba. Madrid Scientific Films

Algunos miles de años después nos encontramos en la Galería de las Estatuas unos neandertales genéticamente diferentes, pertenecientes a una segunda radiación. De estos neandertales nuevos que sustituyeron a los antiguos se ha identificado a lo largo de la secuencia estratigráfica el ADN de por lo menos cuatro mujeres. Las más modernas se datan en unos 80.000 años. El clima ha cambiado para entonces, porque ya ha empezado el último ciclo glaciar. De nuevo la relación entre clima y evolución humana es muy sugerente.

Los neandertales de la última glaciación se conocen informalmente como “clásicos”. Son los más estudiados y los que presentan los rasgos más exagerados. Además hay una característica de los neandertales “clásicos” que es muy importante: tuvieron los cerebros más grandes de toda la evolución humana, más grandes incluso que los nuestros.

En esta investigación han participado, por parte de la Universidad del País Vasco, Arantza Aranburu y Asier Gómez-Olivencia, investigadores del Departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU.

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

El artículo ADN nuclear de varios individuos neandertales a partir de sedimentos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Nuevos neandertales del País Vasco (y algunos que dejan de serlo)
  2. Bioóleo a partir de residuos cítricos
  3. Hidrógeno a partir de composites de fibra de carbono
Categorías: Zientzia

El jerbo que come hierbajos salados y apenas tiene agua para beber

Jue, 2021/04/15 - 11:59
Psammomys obesus. Ilustración: María Lezana

Psammomys obesus, ese es el nombre científico de un jerbo que vive en el noreste de África y el Oriente próximo; se distribuye desde Argelia hasta las regiones de las dos orillas del Mar Rojo. La llaman “rata obesa”, aunque, de hecho, no es una rata, y en cuanto a lo de “obesa”, veremos más adelante que eso depende de las circunstancias. Lo que sí podemos decir es que es bien conocido por los especialistas en algunos campos de la biomedicina.

Vive en lugares relativamente desérticos, donde hay muy poca vegetación y menos agua. Su principal alimento consiste en Atriplex halinus, un matorral que crece en tierras con alto contenido salino, donde ninguna otra planta puede vivir. Se alimenta de las hojas de ese matorral y excava sus huras en sitios donde abundan. Atriplex es una planta de muy escaso valor nutricional; de hecho, la rata obesa es el único animal del que se sabe que la consume en el desierto. Por vivir donde vive, en un medio tan extremo, Psammomys no tiene competidores.

Es un animal muy poco activo. Se podría decir que, como no hay ningún otro animal que compita con ella por el alimento, puede permitirse el lujo de vivir “despacio”. Viviendo así gasta poca energía y eso le conviene, por vivir en un medio muy cálido, ya que en un medio tal, no es fácil disipar el calor que se produce cuando se despliega mucha actividad.

Como he señalado antes, los matorrales que consume la rata obesa son de muy escaso valor nutricional. Esa es, seguramente, otra razón por la que le viene bien la quietud. Pero desgraciadamente para Psammomys, eso tiene una consecuencia muy negativa: cuando se mantiene en cautividad engorda con mucha facilidad, y no solo eso, además padece diabetes de tipo II, que es la que se sufre como consecuencia de una dieta y hábitos alimenticios inadecuados. Eso es lo que le ocurre al pobre jerbo por cambiarle la dieta, pues en los laboratorios lo alimentan con piensos y cereales. Por esa razón, la rata obesa es muy utilizada, como modelo biológico, en las investigaciones sobre obesidad y diabetes. En la actualidad solo se crían en cautividad ejemplares pertenecientes a dos linajes; de hecho, es muy difícil mantenerlos en el laboratorio, ya que mueren con facilidad por culpa, precisamente, de la diabetes.

Donde vive la rata obesa la única agua que puede beberse es la del rocío que queda al amanecer en los matorrales. Por eso los lame en ese momento, antes de que se sequen; es su única bebida. Además, aprovecha toda el agua que puede de los tejidos de la planta, que es muy poca. Está, por ello, obligada a economizarla al máximo.

El mecanismo más poderoso para economizarla consiste en reabsorber en los riñones gran parte del plasma que se ha filtrado en los glomérulos renales; la orina que producen tiene, por esa razón, una concentración muy alta de solutos. Psammomys produce una orina que es 17 veces más concentrada que la sangre. Es un valor altísimo. En la rata canguro, otro pequeño mamífero muy bien adaptado a la vida en zonas séricas, la concentración urinaria de solutos es 14 veces más alta que la sanguínea, algo más baja que la del jerbo. Esa diferencia tiene que ver, seguramente, con la dieta, ya que Atriplex halimus tiene un alto contenido en sales. Así pues, el riñón no solo debe hacerse cargo de un intenso trabajo en economizar agua, sino que debe expulsar las sales que inevitablemente incorpora con la dieta, lo que constituye una severa dificultad añadida.

Psammomys obesus tiene que hacer frente a unas condiciones durísimas en su medio natural. Pero sacarlo de los desiertos en que habita y llevarlo a un laboratorio no mejora en absoluto sus condiciones de vida. Sustituye los rigores propios de la ausencia de agua por la maldición de la obesidad y la diabetes a que le aboca una alimentación mucho más rica que la que le proporcionan los hierbajos salinos del desierto.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El jerbo que come hierbajos salados y apenas tiene agua para beber se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Una proteína humana para potabilizar agua
  2. Los animales que respiran en agua
  3. Marcas de agua digitales, qué son y para qué sirven
Categorías: Zientzia

Annie Russell Maunder: la Lady Computer que fotografiaba el Sol

Mié, 2021/04/14 - 11:59

 

Poseedora de todos los requisitos para el profesionalismo, excepto el género correcto, no solo era una ayudante de Walter, sino también una importante contribuyente a la astronomía por derecho propio. […] La formación matemática básica de Annie Maunder, las reflexivas publicaciones, la edición de revistas y la pertenencia a organizaciones profesionales dejan claro que ella era una participante de pleno derecho en la comunidad astronómica.

Marilyn Ogilvie (traducción libre de [4]).

Annie Scott Dill Russell nació el 14 de abril de 1868 en Irlanda del Norte. Realizó sus estudios secundarios en el Ladies’ Collegiate School de Belfast. Allí, en 1886, ganó el premio a la excelencia académica, lo que le permitió ir a estudiar matemáticas alGirton College de la Universidad de Cambridge. Aunque fue la alumna más destacada de su promoción, al finalizar sus estudios en 1889 y debido a las reglas discriminatorias de esos tiempos, no le concedieron su grado académico.

Annie Russell Maunder. Imagen Wikimedia Commons.

 

Russell comenzó a enseñar matemáticas en el Ladies’ High School de la isla de Jersey, pero no encontraba satisfactorio su trabajo. Su oportunidad de cambiar de actividad no tardó en llegar.

El astrónomo William Christie (1845-1922), director del Real Observatorio de Greenwich entre 1881 y 1910, decidió contratar a mujeres para realizar cálculos astronómicos ante la falta de personal. Las conocidas como Lady Computers fueron empleadas entre 1890 y 1895; las cuatro primeras fueron Isabella Jane Clemes, Alice Everett (1865-1949), Harriet Maud Furniss y Edith Mary Rix (1866-1918). Se incorporaron el 14 de abril de 1890. Alice Everett, quien fue compañera de Annie en Cambridge, la avisó de la posibilidad de encontrar trabajo en el Observatorio. Russell, junto a otras mujeres, se unió en 1891. A pesar de que todas ellas tenían más edad y una formación superior a la de sus compañeros varones, su salario y sus condiciones laborales eran las mismas y apenas las permitían sobrevivir.

Annie fue asignada al Departamento Solar, donde trabajó a las órdenes del astrónomo Edward Walter Maunder (1851-1928), con quien se casaría en 1995. Russell tenía como tarea fotografiar manchas solares y registrar su posición y su tamaño. Durante el primer año de trabajo de Annie en Greenwich, el número de observaciones registradas en el Departamento Solar superó siete veces la cantidad media de registros de los anteriores 35 años.

Al casarse con Maunder, Annie tuvo que renunciar a su puesto en el Real Observatorio de Greenwich ya que las mujeres casadas no podían ejercer cargos públicos. Ella y Alice Everett fueron aceptadas en la British Astronomical Association, fundada por Maunder, que empleaba a astrónomos poco experimentados. Annie trabajó como editora del diario de esta asociación.

Aunque el matrimonio no tuvo hijos propios, Annie cuidó a los cinco hijos (entre 7 y 21 años en el momento de casarse) de Maunder, que había enviudado en 1888. A pesar de sus numerosas tareas domésticas, Annie continuó con su trabajo astronómico colaborando con Walter. Lamentablemente, sus aportaciones no fueron lo suficientemente reconocidas.

El matrimonio Maunder realizó en 1898 una expedición a la India para captar eclipses. Allí Annie realizó fotografías del cielo con una cámara gran angular, diseñada por ella misma, que pudo construir gracias a una subvención del Girton College. En principio, la cámara estaba diseñada para observar la Vía Láctea, pero gracias a su amplitud Annie consiguió capturar la corona del eclipse del 22 de enero de 1898, alcanzando los diez millones de kilómetros.

Annie participó en otras dos expediciones para observar eclipses, una a Argel en 1900 y después otra a Mauricio en 1901. Las fotografías que realizó ayudaron a conocer mejor el comportamiento de la corona solar.

Annie Russell Maunder en la azotea del Hotel de la Régence (Argel) con su cámara. Imagen: Wikimedia Commons.

 

Entre otros muchos proyectos, Annie se involucró en las investigaciones históricas de Walter que buscaban documentar una época de actividad solar anormalmente baja en la segunda mitad del siglo XVII y principios del XVIII. En efecto, entre 1645 y 1715 —intervalo denominado mínimo de Maunder— las manchas solares casi desaparecieron de la superficie solar, como observaron los astrónomos de esa época. Durante un período de 30 años dentro del mínimo de Maunder, se observaron unas 50 manchas solares, cuando lo habitual es percibir entre 40 000-50 000 manchas.

El mínimo de Maunder en 400 años de actividad solar medida por el número de manchas solares. Imagen: Wikimedia Commons.

 

En 1907 Annie creó un catálogo de 600 grupos de manchas solares recurrentes, basándose en los datos obtenidos durante su contrato en el Real Observatorio de Greenwich. Y un año más tarde, con Walter como coautor, publicó The Heavens and their Story, reconociendo el propio Maunder a Annie como autora principal. Escrito de manera divulgativa para un público no experto, incluía sus fotografías del Sol y la Vía Láctea en un intento de atraer a más personas hacia la astronomía.

En 1916, finalmente, fue aceptada como miembro de la Royal Astronomical Society, 24 años después de haber rechazado su primera nominación: fue una de las primeras mujeres en conseguirlo.

Annie Russell Maunder falleció el 15 de septiembre de 1947. En su honor y en el de su marido se nombró el cráter Maunder —un cráter de impacto situado en la cara oculta de nuestro satélite—: Annie es una de Las mujeres de la Luna.

Cráter Maunder. Wikimedia Commons.

 

Referencias:

[1] Daniel Roberto Altschuler Stern Fernando J. Ballesteros Roselló, Las mujeres de la Luna. Historias de amor, dolor y valor, Next Door Publishers, 2016

[2] M.T. Bruck, Lady Computers at Greenwich in the Early 1890s, Quarterly Journal of the Royal Astronomical Society 36 (1995) 83-95

[3] M. T. Bruck, Alice Everett and Annie Russell Maunder torch bearing women astronomers, Irish Astronomical Journal 21 (3/4) (1995) 280-291

[4] I J Falconer, J G Mena, J J O’Connor, T S C Peres, E F Robertson, Annie Scott Dill Maunder, MacTutor History of Mathematics archive, University of St Andrews

[5] Ziortza Guezuraga, Mirando al sol, Annie Russell Maunder, Mujeres con ciencia, Vidas científicas, 17 mayo 2017

[6] Wikipedia

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad

El artículo Annie Russell Maunder: la Lady Computer que fotografiaba el Sol se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Vida de Galileo
  2. Personas famosas que estudiaron matemáticas: literatura y cine
  3. Henri Cartan, un “bourbakista” especialista en teoría de haces
Categorías: Zientzia

Actúa localmente: simulaciones hiperrealistas

Mar, 2021/04/13 - 11:59
Foto: Joshua Coleman / Unsplash

En un futuro distópico la humanidad está atrapada sin saberlo dentro de una realidad simulada, Matrix, que las máquinas inteligentes han creado para distraer a los humanos mientras usan sus cuerpos como fuente de energía. Esta era la base de Matrix, la película de las Wachowskis de 1999. Si bien el argumento no parece muy eficiente desde el punto de vista termodinámico su impacto cultural es evidente, incorporándose el título de la película al lenguaje popular para significar que se vive en un mundo inventado y separado de la realidad.

Sin embargo, la idea de que vivimos en una simulación no es nueva en absoluto. Desde la ilusión del mundo del hinduismo (maya) y el sueño de Zhuang Zhou ser una mariposa taoísta, pasando por la caverna de Platón hasta llegar al genio maligno (malin génie) de Descartes, el Dios de Berkeley y el murciélago en la cubeta, la tentanción solipsista del escéptico, el concepto de que lo único que existe es mi consciencia y algo que le da información, es una constante histórica.

La idea de que todo nuestro universo no es más que una simulación en un ordenador de una civilización hiperavanzada no es fácilmente descartable. Solo aplicando la navaja de Ockham podríamos aventurarnos a sugerir que no parece muy probable. Con todo, Nick Bostrom publicó un artículo en 2003 en la revista Philosophical Quarterly titulado “¿Vives en una simulación por ordernador?” que dio paso a todo un movimiento metafísico, que no epistemológico, que afirma la realidad de esa simulación, el “simulismo”.

Curiosamente los humanos tendemos a comparar las cosas con aquellas que ya conocemos. Si nuestro conocimiento avanza con el tiempo, nuestras comparaciones lo hacen en paralelo. El típico ejemplo es el funcionamiento del encéfalo, que se compara con cualquier tecnología que sea la más avanzada, impresionante y con un halo de misterio del periodo en cuestión. Así Descartes comparó el encéfalo con una máquina hidráulica; Freud con una de vapor; posteriormente se asimiló el encéfalo a una centralita telefónica, después a un circuito eléctrico, para terminar llegando al ordenador; últimamente ya se encuentran textos en los que se le asimila a un navegador web o a Internet.

Cuando imaginamos el futuro estamos presos de exactamente el mismo sesgo cognitivo. Las personas que se plantean que el universo pueda ser una simulación lo hacen basándose en lo que la realidad virtual es capaz de hacer hoy día, lo que dota de validez emocional a la comparación pero no por ello la hace más probablemente cierta.

Y es que la realidad virtual está cada vez en más sitios, desde entornos para la rehabilitación de personas que han sufrido infartos cerebrales, en videojuegos (de todo tipo), hasta simulaciones hiperrealistas que permiten el entrenamiento seguro del personal especializado que va a realizar tareas muy complejas y potencialmente muy peligrosas.

Lo que puede llegar a conseguir la realidad virtual lo ilustra la vasca Virtualware que ha sido capaz, por ejemplo, de crear una simulación para GE Hitachi Nuclear Energy en la que se puede realizar el entrenamiento realista del movimiento del combustible radiactivo de una central nuclear, una operación en la que el nivel de conocimientos exigidos y la coordinación operativa del personal es del máximo nivel, y donde cualquier discrepancia con la realidad puede salir muy cara.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Actúa localmente: simulaciones hiperrealistas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Actúa localmente: impresión 3D de piezas aeronáuticas de titanio
  2. Actúa localmente: huesos a partir de ARN modificado e impresoras 3D
  3. Actúa localmente: convertidores de potencia basados en carburo de silicio
Categorías: Zientzia

La feminización de las aguas, cosa de humanos

Lun, 2021/04/12 - 11:59

María Larumbe / GUK

Tirar de la cadena o eliminar productos por el fregadero son gestos rápidos y eficaces que nos permiten desprendernos con facilidad de los residuos que generamos. Sin embargo, ¿te has parado a pensar alguna vez dónde van a parar esos productos? La realidad es que continúan su camino hacia el mar y los ríos del entorno y, aunque sean tratados por las depuradoras, algunos contaminantes acaban llegando a los ecosistemas marinos y fluviales, provocando fenómenos de lo más sorprendentes. De hecho, malas prácticas como desechar fármacos, productos de limpieza o algunos plásticos habituales del hogar de manera inadecuada causan problemas en el equilibrio marino como, por ejemplo, el cambio de sexo de algunos peces y moluscos.

No hay que olvidar que los peces, desde su fase embrionaria y durante toda su vida hasta que mueren, se ‘beben’ todo lo que no puede ser tratado por las depuradoras como algunos compuestos químicos, que debido a su naturaleza, evitan la acción de los sistemas de depuración. Algunos de ellos, como los detergentes de tipo alquifenol etoxilado, componentes plásticos como los ftalatos, pinturas, o fármacos de distinta índole como las píldoras anticonceptivas o los antidepresivos, pueden alterar el sistema endocrino de algunas especies acuáticas, provocando cambios en el crecimiento, desarrollo, comportamiento e incluso en sus sistemas reproductor e inmunológico.

En este sentido, una de las alteraciones más llamativas es la feminización de algunos organismos acuáticos, lo que se conoce como fenómeno intersex. Se trata de un fenómeno descubierto en la década de los 90 por un grupo de investigadores de Reino Unido que detectaron cómo los testículos de los peces macho que habitaban en ríos próximos a zonas industrializadas y urbanizadas desarrollaban ovocitos, células reproductoras femeninas, por efecto de estos vertidos.

Mugil cephalus (nombres comunes: mújol, corcón, muble, albur, muxo, llisa, lisa, lebrancho)

Posteriormente, estos efectos se han descrito en diferentes zonas del mundo, siempre en zonas urbanas e industriales. En 2007 el grupo de investigación de Biología Celular en Toxicología Ambiental (BCTA) de la UPV/EHU detectó este fenómeno por primera vez en la costa vasca en la población de mújoles (o corcones) presentes en la Reserva de la Biosfera de Urdaibai.

Un hecho que, como explica el biólogo Maren Ortiz Zarragoitia, miembro del BCTA e investigador en la Estación Marina de Plentzia (Plentziako Itsas Estazioa), “está asociado principalmente a unos contaminantes que tienen la capacidad de accionar el mecanismo dependiente de las hormonas femeninas, los estrógenos, haciendo que las gónadas, en vez de producir espermatozoides de una forma normal, comiencen a producir ovocitos”.

Entre los contaminantes que afectan a las alteraciones del sistema reproductivo de los peces se encuentran derivados de los detergentes como los alquifenoles, ftalatos, el Bisfenol A o BPA, un compuesto plástico muy hormonado que se utiliza habitualmente en la fabricación de empastes y que se trata de uno de los imitadores del estradiol, la hormona sexual femenina. Este compuesto ha sido detectado en los estuarios, muestras de agua, así como en la bilis de los peces, que los metabolizan y los acumulan. También se han encontrado restos de fármacos como el etinilestradiol, componente principal de la píldora anticonceptiva.

Gónadas intersex (testículos con ovocitos). Fuente: Ainara Valencia

Además de la feminización de algunos machos, en el marco de sus investigaciones, estos expertos también están viendo que, en los lugares donde se ha detectado un alto porcentaje de peces intersex, los niveles de desarrollo ovocitario de las hembras no son tan buenos como en el de peces de otras zonas no contaminadas. En este sentido se han localizado hembras con ovocitos de menor calidad o con atresia -degeneración de óvulos-.

Efectos de la feminización de las aguas

Toma de muestras. Fuente: Maren Ortiz Zarragoitia

En la actualidad, el BCTA está embarcado en un nuevo proyecto de investigación que se centra en la observación de la calidad de los gametos de los peces intersex con el objetivo de determinar si este fenómeno puede terminar afectando a la capacidad reproductiva de la población.

En concreto, dentro de este estudio se busca observar, por un lado, si el esperma de los machos intersex se comporta de forma similar o si tiene la misma calidad que la de los machos que no han estado expuestos a estos contaminantes y si este hecho repercute en la fertilidad de sus hembras, es decir, si sus ovocitos son de peor calidad que los de las hembras de zonas más limpias.

Las muestras de peces que se están investigando dentro de este proyecto son, sobre todo, mújoles o corcones, una especie abundante en las aguas vascas, fácil de capturar y que es muy buena para poder hacer comparativas, ya que vive tanto en zonas contaminadas como en zonas libres de estos componentes. Además de en los mubles, también se está caracterizando el fenómeno intersex en moluscos como ostras y mejillones, así como en copépodos, organismos presentes en el plancton.

Este estudio se está centrando sobre todo en Urdabai y en Pasaia, dos de las zonas con más organismos intersex detectados en Euskadi. Cuestión que, aunque resulte sorprendente en el caso de Urdaibai, declarada Reserva de la Biosfera por la UNESCO en 1984, puede estar relacionada, como explica Ortiz Zarragoitia, con la actual depuradora de aguas residuales de la zona, “que actualmente solo hace un tratamiento primario, quitando sólidos y partículas, y no evita la persistencia de los contaminantes diluidos en el agua”, así como con el aumento de la población en la zona de Gernika y alrededores. De todas formas, esperamos que con la conexión de la nueva depuradora de aguas residuales se vea una recuperación en la zona”.

Así al menos ha ocurrido en el caso de Pasaia, en donde se aprecia “una tendencia a la baja en los efectos hormonales, en comparación con años anteriores tras la instalación de la nueva depuradora de aguas residuales de Loiola”.

Hacia un futuro que no sea de “usar y tirar”

Para poder hacer frente a los efectos de la contaminación y el estrés ambiental, es importante reducir el uso de plásticos, mejorar la eficiencia de los sistemas de depuración y seguir apostando por el uso de nuevos recursos para depender menos de energías fósiles, que producen grandes cantidades de contaminantes.

Estas investigaciones ponen sobre la mesa la importancia de cuidar el medio acuático, ya que la salud de estos organismos y de los espacios donde viven, está asociada a nuestra propia salud. La contaminación y el estrés ambiental afecta tanto a la calidad del ecosistema y a estos peces y moluscos que también nos sirven de alimento. También invitan a pensárselo dos veces antes de tirar nada por el fregadero o el inodoro.

Además de miembro del BCTA e investigador de la Estación Marina de Plentzia, Maren Ortiz-Zarragoitia es coordinador del Máster Erasmus Mundus en Contaminación y Toxicología Ambientales ECT+ de la Universidad del País Vasco.

El artículo La feminización de las aguas, cosa de humanos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El estrés no es solo cosa de humanos
  2. Feminización por contaminación
  3. Guepardos de aguas profundas
Categorías: Zientzia

Envejecemos mejor que nuestros padres

Dom, 2021/04/11 - 11:59
Foto: Heike Mintel / Unsplash

Si tiene fotografías de familiares de hace varias décadas, les echa un vistazo y verifica la fecha en que se tomaron, se sorprenderá al comprobar que quienes aparecen en la imagen aparentan tener diez años más que los que tienen. En efecto, parecen más viejos. Y si es usted o su pareja quien, en este momento, tiene la edad que tenían quienes aparecen en la instantánea, se debatirá, perplejo, entre dos posibilidades: ¿Habrá envejecido mucho mejor que sus familiares? ¿O quizás es que la imagen que tiene de sí mismo le engaña y, en realidad, también usted ha envejecido aunque no lo quiera aceptar?

Quizás le ocurran ambas cosas a la vez, pero lo más probable es que usted y su pareja hayan envejecido menos que los familiares de la imagen a su misma edad. Esta es la conclusión a la que ha llegado el equipo de la gerontóloga Taina Rantanen de la Universidad de Jyväskylä, Finlandia, tras estudiar la condición física y cognitiva de dos grupos de personas, unas nacidas en 1910 y 1914, y las otras, cerca de tres décadas después. Las del primer grupo fueron examinadas entre 1989 y 1990, con 80 y 75 años de edad, y las del segundo grupo entre 2017 y 2018, también con 80 y 75 años de edad. A todas ellas se les hicieron pruebas de desempeño físico y de capacidad cognitiva.

Los del grupo que habían nacido tres décadas más tarde, caminaban más rápidamente y tenían más fuerza, tanto en las manos, al sujetar objetos, como en las piernas. Y en lo que se refiere a las capacidades cognitivas, los nacidos más tarde tenían más fluidez verbal, reaccionaban con mayor rapidez al realizar tareas complejas de movimiento de dedos y obtuvieron mejores resultados en ejercicios de correspondencias entre símbolos y números. En ambos casos se han comparado los registros correspondientes a personas de la misma edad.

El mejor desempeño físico y cognitivo que reflejan los resultados de las pruebas en quienes nacieron tres décadas más tarde no tuvo, no obstante, carácter general. Las medidas de función respiratoria, por ejemplo, no mostraron mejoría, ni tampoco las de la tarea de memoria a corto plazo que consiste en recordar secuencias numéricas.

Con el paso de los años, las condiciones de vida han mejorado en gran parte del mundo, y desde luego lo han hecho en los países occidentales. La prosperidad ha propiciado una mejor alimentación, con todo lo que ello implica en términos de salud. Pero también ha mejorado, y mucho, la atención médica. La gente ha estado cada vez más sana y es, por ello, lógico que llegue en mejores condiciones a edades avanzadas.

En lo que se refiere al desempeño cognitivo, un mejor estado de salud también ha podido ser un factor positivo pero, en este caso, los años de formación han ejercido una influencia determinante. De hecho, cuando se descuenta el efecto de los años de aprendizaje, las diferencias entre los grupos nacidos en épocas distintas se atenúan hasta casi desaparecer.

Por último, debe considerarse el efecto del nivel formativo sobre el estado de salud. Quienes tienen mejor formación también tienen hábitos de vida más saludables, acuden al médico con más diligencia y, dependiendo del país y la región en la que viven, tienen acceso a mejores servicios de salud. Se cierra así el círculo virtuoso que propicia un envejecimiento más saludable, una vejez más grata y una vida más prolongada. De lo que se trata es de que cada vez sean más, en todo el mundo, las personas que entran en ese círculo.

Fuentes:

Koivunen K et al: Cohort differences in maximal physical performance: a comparison of 75- and 80-year-old men and women born 28 years apart. J Gerontol A Biol Sci Med Sci, 2020 Sep 4, glaa224, doi: 10.1093/gerona/glaa224

Munukka, M eta al: Birth cohort differences in cognitive performance in 75- and 80-year-olds: a comparison of two cohorts over 28 years. Aging Clin Exp Res, 2020 Sep 12, doi: 10.1007/s40520-020-01702-0

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo Envejecemos mejor que nuestros padres se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Si estás embarazada, mejor no consumas alcohol
  2. Una población mejor formada es una población más sana
  3. Nuestros ancestros asesinos
Categorías: Zientzia

José Miguel Viñas – Naukas Bilbao 2019: Meterorología cuántica

Sáb, 2021/04/10 - 11:59
Foto: NOAA / Unsplash

La meteorología cuántica es esa rama de la física que busca respuestas a los cuantos: ¿cuánto pesa una nube? ¿A cuánta velocidad caen las gotas de lluvia? ¿Cuántos rayos caen en la Tierra ahora mismo? Una de las características definitorias de la meteorología cuántica es que emplea unidades de medidas un poco raras, como el elefante asiático para la masa. Unos de los gurús de este campo, José Miguel Viñas, nos da algunas respuestas.

José Miguel Viñas es físico del aire y comunicador científico, meteorólogo en Meteored, en el portal www.tiempo.com, y consultor de la Organización Meteorológica Mundial.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo José Miguel Viñas – Naukas Bilbao 2019: Meterorología cuántica se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. José Miguel Viñas – Naukas P4K 2019: De nubes las pinacotecas están llenas
  2. Naukas Bilbao 2017 – José Miguel Viñas: Me río yo del cambio climático
  3. José Ramón Alonso – Naukas Bilbao 2019: Son nuestros amos y nosotros sus esclavos
Categorías: Zientzia

El colesterol de su membrana es lo que permite al VIH infectar las células

Vie, 2021/04/09 - 11:59

 

Un equipo de investigadores del Instituto Biofisika (UPV/EHU) ha descrito cómo el colesterol presente en la membrana del virus de la inmunodeficiencia humana (VIH) organiza y dirige la maquinaria viral para que el virus pueda entrar en nuestras células e infectarlas. Este hallazgo abre una nueva puerta para el desarrollo de fármacos más directos y eficientes para frenar la infección del virus.

El VIH es el virus causante del síndrome de la inmunodeficiencia adquirida (SIDA) debido a que las células que infecta y destruye son células inmunitarias. Este virus posee una membrana lipídica rica en colesterol, y precisamente este lípido es el objeto del estudio. Insertada en la membrana lipídica se encuentra la proteína de fusión o de envuelta ‘Env’, la cual a su vez está compuesta por dos subunidades, gp120 y gp41. La subunidad gp120 es la encargada de reconocer y unirse a la célula huésped mediante los receptores celulares. Una vez anclada en la célula, la subunidad gp41 sufre un cambio conformacional y se inserta en la membrana de la célula huésped, atrayéndola hacia el virus e induciendo la fusión entre ambas membranas. Esta fusión permite que el virus entre, infecte a la célula y se replique.

A diferencia de otros virus como el de la gripe o los diferentes coronavirus, el VIH posee muy pocas copias de proteínas ‘Env’. Para poder acceder eficientemente a la célula huésped, las proteínas ‘Env’ tienen que reorganizarse formando una agrupación o clúster. El trabajo demuestra que una región de la proteína ‘Env’ interacciona con el colesterol del virus, y que esta unión es lo que permite que ‘Env’ se reorganice en grupo y pueda infectar las células huésped de forma efectiva.

Con anterioridad a este estudio publicado por el grupo del Instituto Biofisika se conocía la composición exacta de la membrana viral y que el colesterol era un elemento importante para la estabilidad e infectividad del virus, ya que la eliminación o disminución del colesterol viral causa la pérdida de capacidad de entrar a la célula huésped. También se conocía que las proteínas ‘Env’ se reorganizaban en un solo clúster, y que además este proceso era necesario para que el virus fuera infectivo.

Sin embargo, se desconocía el papel específico del colesterol en la infectividad del virus y si estaba involucrado en la formación de clústers de ‘Env’, así como qué región de la proteína ‘Env’ era la encargada de interaccionar directamente con el colesterol. Este estudio responde a estas preguntas dilucidando el mecanismo molecular por el cual el colesterol viral y la región citoplasmática de ‘Env’ interaccionan, permitiendo que ‘Env’ forme los clústers indispensables para que el VIH sea infectivo.

El papel de los lípidos en la estructura y función de diversas proteínas es una temática muy desconocida. Esto se debe a la falta de herramientas para llevar a cabo estudios concluyentes y al hecho de que la unión de un lípido a una proteína puede ocurrir en tiempos muy cortos, del orden de milisegundos, lo cual hace que estudiar y esclarecer dichos procesos represente un desafío importante para la ciencia. En este contexto, otra de las aportaciones importantes del estudio es el desarrollo y empleo de herramientas químicas englobadas dentro de la química biológica, que permiten el estudio de procesos biológicos in vivo, así como que el estudio se ha realizado en partículas virales directamente.

Este descubrimiento podría tener efectos inmediatos en el desarrollo de fármacos que desestabilicen y bloqueen al virus, y así evitar que se propague la infección. Además, el conocimiento generado por este trabajo también tiene importantes implicaciones en el desarrollo de vacunas que bloqueen el virus antes de que se establezca la infección. ‘Env’ es la única proteína en la superficie del virus y por lo tanto la única proteína viral accesible y susceptible de generar anticuerpos que eviten la entrada del virus a la célula huésped, el primer paso de la infección. Sin embargo, hasta la fecha no se han conseguido diseñar inmunógenos capaces de generar anticuerpos neutralizantes que puedan ser usados en una vacuna, probablemente porque, entre otras cosas, no se ha conseguido imitar el inmunógeno tal y como se presenta en la infección real. Por lo tanto, el conocimiento de la estrecha relación entre ‘Env’ y colesterol generado en este trabajo podría ayudar a mejorar el diseño de inmunógenos usados para el desarrollo de vacunas.

“Además, la interacción de proteínas con colesterol también podría tener una gran relevancia en el SARS-CoV-2, el virus causante de la COVID-19. En el caso del SARS-CoV-2, parece que el colesterol en las células del paciente juega un papel importante a la hora de regular la infectividad del virus, pues si se altera el metabolismo normal del colesterol en un paciente se puede ver afectada la fuerza con la que el SARS-CoV-2 infecta a sus células. Con el abordaje y las herramientas moleculares utilizadas en el trabajo desarrollado en el Instituto Biofisika se podría estudiar a nivel molecular el papel específico del colesterol en la regulación de la infectividad del SARS-CoV-2, y así entender mejor las vías de entrada del virus y cómo bloquearlas”, comenta Lorizate.

Referencia:

Jon Ander Nieto‐Garai, Aroa Arboleya, Sara Otaegi, Jakub Chojnacki, Josefina Casas, Gemma Fabriàs, F‐Xabier Contreras, Hans‐Georg Kräusslich, y Maier Lorizate (2020) Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV‐1 Env Clustering Advanced Science doi: 10.1002/advs.202003468

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

 

El artículo El colesterol de su membrana es lo que permite al VIH infectar las células se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. ¿Sirve de algo la ‘pastilla del colesterol’?
  2. Cómo criopreservar células madre
  3. Cómo ver todas las células en tejido cerebral vivo
Categorías: Zientzia

El oído absoluto de los animales

Jue, 2021/04/08 - 11:59
Foto: Ryk Naves / Unsplash

Fue una de las cosas que descubrí durante el confinamiento. En el árbol que crece frente a mi casa habita un pajarillo que ensaya su repertorio de canciones casi siempre cuando empieza a ponerse el sol. Si desconozco su especie es porque entre mis vicios no se encuentra la ornitología. Y tampoco sé si el silencio del pasado marzo le ayudó a él a alzar la voz, o a mí, a escucharlo por primera vez. Pero desde hace cosa de un año, yo lo llamo Federico y lo identifico sin fallo por su tono burlón:

—¡Mi-re-do#, mi-re-do#! —dice siempre, apoyándose en la última nota.

Lo sorprendente es que todos los días su canto es exactamente el mismo. Lo sé porque una tarde empecé a imitarle con el piano y, desde entonces, he seguido acompañándole siempre en la mayor. Nunca desafina, el tío, ni se desvía de las notas lo más mínimo. Mi re do# es exactamente su canto de guerra y lo seguirá siendo mientras pueda trinar.

Esta extraña insistencia tiene, sin embargo, una explicación bastante sencilla: Federico tiene oído absoluto. Es una habilidad que le permite identificar cada tono por su frecuencia, sin ningún tipo de referencia adicional.

Evidentemente, el pajarillo no sabe que al otro lado de la ventana hay un simio con piano que le pisa los solos usando unas teclas llamadas “mi-re-do#. Pero el hecho es que identifica estos sonidos de manera consistente y los reproduce, día tras día, sin necesidad de que nadie le ayude a afinar, ni le recuerden cómo sonaba su tonalidad habitual. La mayoría de los humanos no tenemos esta habilidad. Y no se trata solo de que no sepamos llamar a las notas que suenan por su nombre como hacía Mozart (esto requiere necesariamente algún tipo de entrenamiento musical). Tampoco solemos recordar el tono de un sonido de un día para otro. Cuando en invierno encendemos la calefacción y la caldera se pone a aullar, no sabemos si sus alaridos suenan más graves o más agudos que los del día anterior. Yo misma, que vivo rodeada de notas y partituras, tuve recurrir a mi piano para descubrir que Federico estaba afinando siempre igual.

El oído absoluto, tan excepcional entre los humanos, no es un don demasiado raro en el reino animal1. Muchas especies de aves cantoras comparten esta habilidad auditiva. También los lobos, las ratas y otros roedores, según se ha observado, reconocen a otros miembros de su propia especie por el tono de su llamada. Esto nos indica que son capaces de identificar la frecuencia fundamental de los sonidos de manera absoluta y recordarla de un día para otro.

Lo más curioso de todo es que nuestro propio encéfalo y el de otros simios muestra una representación directa de los tonos. En nuestro oído, existe un órgano encargado de separar las distintas frecuencias del sonido llamado cóclea. Está recorrida por una membrana de rigidez decreciente (la membrana basilar), que vibra de forma selectiva en distintas regiones, según lo grave o agudo que es un sonido. Las distintas frecuencias llegan a nuestro córtex auditivo, donde existe un mapa tonotópico, que se activa de manera diferente cuando suena un mi o un fa. Esta es la paradoja: podríamos adivinar qué notas está escuchando una persona con solo observar sus patrones de activación cerebral. Pero ella misma no es capaz de acceder conscientemente a esa información. Es como si hubiese olvidado cómo llegar a ella.

Esta es, precisamente, una de las hipótesis que barajan algunos antropólogos y psicólogos de la música y el lenguaje2. Su idea es que hace cientos de miles de años todos nuestros antepasados tenían oído absoluto, como Federico. La frecuencia de cada sonido era tan nítida para ellos como lo es cualquier color para nosotros en la actualidad. Sin embargo, con el paso de los siglos fuimos perdiendo esa habilidad para poder dominar otra mucho más útil en términos evolutivos: el lenguaje3. Nuestra capacidad para reconocer los contornos del habla, las emociones de la prosodia, todas las melodías que nos acompañan cada vez que nos comunicamos con otros seres humanos depende crucialmente de nuestro oído relativo, una habilidad mucho más excepcional, en términos evolutivos, que el oído absoluto.

De hecho, y según he podido averiguar, mi plumífero vecino sería incapaz de reconocer su propia melodía si yo la tocase en otro tono o si intentase imitarlo con mi propia voz, más grave que la suya. A pesar de su asombrosa musicalidad, Federico no tiene oído relativo4. Para él sería impensable reconocer un contorno melódico simplemente por las relaciones entre sus notas. Nuestro oído, en cambio, es principalmente sensible a las relaciones, las distancias, los intervalos. Este es su verdadero superpoder, la habilidad única que nos permite oír “la misma” canción aunque todas sus notas hayan cambiado.

Referencias:

1Honing, Henkjan. The Evolving Animal Orchestra. Translated by Sherry MacDonald, The MIT Press, 2019.

2Mithen, Steven. “Perfect pitch.” The Singing Neanderthals: The Origins of Music, Language, Mind and Body, Harvard University Press, 2007.

3Saffran, J. R., and Griepentrog, G. J. 2001. Absolute pitch in infant auditory learning: evidence for developmental re-organization. Developmental Psychology 37, 74–85.

4Se ha conseguido entrenar a algunas especies de aves para que reconozcan acordes en distintas tonalidades. Pero parece que el oído absoluto sigue siendo su principal referencia. Ver Hoeschele, Marisa, et al. “Searching for the Origins of Musicality across Species.” The Origins of Musicality, edited by Henkjan Honing, The MIT Press, 2018.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

El artículo El oído absoluto de los animales se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El oído absoluto de Mozart
  2. El oído absoluto y las lenguas tonales
  3. Los animales entienden la muerte más de lo que se pensaba
Categorías: Zientzia

Los números apocalípticos

Mié, 2021/04/07 - 11:59

 

El número de la Bestia, el 666, es un número que causa cierta pasión entre muchas personas. En el pasado ya dedicamos un par de entradas del Cuaderno de Cultura Científica a hablar del mismo: 666, el número de la Bestia (1) y 666, el número de la Bestia (2).

El número del hombre (1977), del artista canadiense Carle Hessay (1911-1978). Imagen de la web del artista Carle Hessay

 

En esta entrada vamos a introducir algunas familias de números relacionadas con el número de la Bestia, el 666. Empezaremos con una familia sencilla, que introdujo el matemático estadounidense Eric W. Weisstein, creador de la enciclopedia MathWorld, el grupo de los números bestiales, que son aquellos números que en su representación en base decimal, base 10, poseen al número de la Bestia entre sus dígitos. Serían números como 1.666, 6.661, 2.666, 6.662, 3.666, 6.663, etcétera (la sucesión A051003, de la Enciclopedia online de secuencias de números enteros).

El número bestial 1.666, que es el año del gran incendio de Londres, es uno de los números que utiliza todas las letras del sistema de numeración romano: MDCLXVI. Otro número bestial, el 2.666, nos lo encontramos como título de la novela póstuma del escritor chileno Roberto Bolaño (1953-2003).

Portada de la edición del libro “2666” del escritor chileno Roberto Bolaño, publicado en 2004 en la colección Narrativas hispánicas de Anagrama

 

Otra familia de números relacionada con el número de la Bestia, son aquellos números que podríamos llamar números del apocalipsis (ojo, que en la traducción del libro La maravilla de los números, de Clifford A. Pickover se denominan “apocalípticos”, pero ese nombre es el que reciben otros números que veremos más adelante), que son aquello que poseen 666 dígitos en su representación decimal.

Por ejemplo, el siguiente número, que podemos encontrar en la página Prime Curious!,

100000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000166657

es un número del apocalipsis (porque tiene 666 dígitos), que es un número bestial (contiene al 666) y además es primo, de hecho, es el número más pequeño con estas tres propiedades a la vez.

Otro número del apocalipsis, como se nos cuenta en el mencionado libro de Pickover, es el número de Fibonacci (véanse las entradas ¡Póngame media docena de fibonaccis!  o El origen poético de los números de Fibonacci) número 3.184, F3184, que es el siguiente:

116724 3740814955 4123343576 4579214184 0689747174 4343943723 6331282736 2620824523 8531296068 2327210312 2788807682 4497987607 3455971975 1986312246 9939230900 1139062569 1096510740 1965107608 1705393206 0237984793 9189700037 7475124471 3440254679 5076870699 0550322971 3343709400 9365444241 1815206857 9040410434 0056856808 1194379503 0019676693 5663379234 7218656896 1365839903 2791816735 2721163581 6503595776 8655229310 2708827224 2471094763 8211542756 8268820040 2585049861 1340877333 3220873616 4591167264 9719869891 5791355883 4313855569 5800212192 8147052087 1752067489 3636617125 3380422058 8026552914 0335814561 9514604279 4653576446 7290281171 1540760126 7725615728 6715574607 0260678592 2979179042 4885389235 8861771163.

El número de la Bestia es 666 (1805), del pintor y poeta británico William Blake (1757-1827). Imagen del Archivo William Blake

Pero la familia de números que quería mostraros en esta entrada son los números apocalípticos, que son aquellos números de la forma 2 elevado a un número natural, 2n, que contienen la expresión 666 entre sus dígitos. Es decir, que son números bestiales de la forma 2n. El exponente más pequeño que da lugar a un número apocalíptico es 157, ya que, si calculamos 2157, este es igual a

182.687.704.666.362.864.775.460.604.089.535.377.456.991.567.872,

que, como vemos, contiene la expresión 666.

Estos números fueron introducidos por el matemático británico Neil J. A. Sloane, creador de la Enciclopedia online de sucesiones de números enteros, y el matemático canadiense Simon Plouffe, coautor con Sloane del libro The Encyclopedia of Integer Sequences (1995). El nombre de esta sucesión de números en la Enciclopedia online de sucesiones de números enteros es A007356 y los primeros exponentes que dan lugar a números de esta familia son:

157, 192, 218, 220, 222, 224, 226, 243, 245, 247, 251, 278, 285, 286, 287, 312, 355, 361, 366, 382, 384, 390, 394, 411, 434, 443, 478, 497, 499, …

A estos números n tales que 2n es un número apocalíptico se les llama exponentes apocalípticos. En la Enciclopedia online de sucesiones de números enteros podemos ver los primeros mil exponentes apocalípticos, que incluyen los exponentes 1.968 y 1.972.

El exponente apocalíptico más pequeño que da lugar a dos secuencias de 666 es 220, ya que 2 elevado a 220 es igual a:

1.684.996.666.696.914.987.166.688.442.938.726.917.102.321.526.408.785.780.068.975.640.576.

Al principio casi no hay exponentes apocalípticos. Como hemos visto, el primero es 157, solo hay otro en esa centena 192 o doce en la siguiente {218, 220, 222, 224, 226, 243, 245, 247, 251, 278, 285, 286, 287}. Y solo hay 125 exponentes apocalípticos menores que 1.000. Sin embargo, según vamos avanzando en los números naturales, cada vez hay más exponentes apocalípticos, hasta el punto que cualquier número mayor que 29.785 es altamente probable que sea un exponente apocalíptico.

La siguiente imagen nos ilustra perfectamente lo que acabamos de comentar. En ella se representan los exponentes apocalípticos sobre la espiral de Ulam. Como ya explicamos en la entrada del Cuaderno de Cultura Científica El poema de los números primos la espiral de Ulam es una cuadrícula de números en la que se representa el número 1 en el centro y se continúan representando los demás números naturales (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…) en espiral alrededor del 1 (en el sentido contrario a las agujas del reloj). En el contexto de los números primos se pintaban los cuadrados con números primos de negro (u otro color), mientras que los cuadrados de los números compuestos se dejaban de blanco (o incluso se podían pintar de otro color también).

En la siguiente imagen, que contiene una cuadrícula de 120 x 120 cuadrados (es decir, 14.400 cuadrados o números) se han pintado de rojo los cuadrados de los números que son exponentes apocalípticos, mientras que quedan sin pintar los cuadrados de los números que no son exponentes apocalípticos. Por ese motivo, la parte central de la espiral de Ulam “apocalíptica” no contiene cuadrados rojos, ya que hasta el número 157 ningún número es un exponente apocalíptico. Poco a poco van apareciendo, en espiral, los cuadrados rojos y al final casi todos son rojos.

Espiral de Ulam con los exponentes apocalípticos pintados de rojo.

 

Vamos a cerrar esta entrada con dos números relacionados con el número de la Bestia y que introduce el divulgador Clifford Pickover en alguno de sus libros. El primero de ellos es el número legión (aparece en el libro Las matemáticas de Oz), que es el número de la Bestia 666 elevado al número de la Bestia 666, es decir,

666666.

Este es un número con 1.881 dígitos, que empieza con la expresión “2715417592” y termina en “0880598016”.

Y el otro, más grande aún, que aparece en el libro El prodigio de los números, es el número Leviatán, que es igual al factorial de 10 elevado al número de la Bestia, es decir,

(10666)!

Recordemos que el factorial de un número m es el número igual a la multiplicación de todos los números naturales menores, o iguales, que el mismo, es decir, m! = m x (m – 1) x (m – 2) x … x 3 x 2 x 1. Así, para los primeros números naturales sus factoriales son 1! = 1, 2! = 2, 3! = 6, 4! =24, 5! = 120, 6! = 720, 7! = 5040, y podríamos continuar.

El número leviatán es un número enorme. Para empezar, es mucho más grande que un de googol, que es 10 elevado a 100, esto es, 10100. De hecho, es más grande que 10668. Además, sus seis primeros dígitos son 134.072.

Litografía 666 (el número de la bestia), de 1999, del artista neoexpresionista alemán A. R. Penck (1939-2017). Imagen de la página ArtPrice

 

Bibliografía

1.- Enciclopedia online de secuencias de números enteros

2.- Wolfram MathWorld: Apocalypse Number

3.- Clifford A. Pickover, La maravilla de los números, Ma Non Troppo, 2002.

4.- Numbers aplenty: apocaliptic number

5.- Clifford A. Pickover, Las matemáticas de Oz, Almuzara, 2005.

6.- Clifford A. Pickover, El prodigio de los números, Ma Non Troppo, 2002.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

El artículo Los números apocalípticos se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La magia de los números (el teorema de Moessner)
  2. El secreto de los números que no querían ser simétricos
  3. Los números que proporcionan alegría
Categorías: Zientzia

Actúa localmente: huesos a partir de ARN modificado e impresoras 3D

Mar, 2021/04/06 - 11:59

En el mundo desarrollado la población envejece. En el mundo en desarrollo, conforme se consiguen avances económicos, sanitarios y sociales, las mujeres no tienen tantos hijos, por lo que también envejece, aunque en promedio de edad sean mucho más jóvenes. El hecho cierto es que el envejecimiento generalizado es una de las grandes macrotendencias demográficas y, por tanto, económicas para el futuro previsible.

El envejecimiento trae asociados cambios en qué se consume y cómo se consume, pero también en qué enfermedades serán cada vez más frecuentes simplemente porque lo son en las personas de mayor edad. Así, por ejemplo, los distintos tipos de cáncer o las enfermedades neurodegenerativas serán cada vez más comunes, oscureciendo estadísticamente los avances que se realizan para combatirlas. Por eso es tan importante invertir en prevención y en desarrollo de la ciencia básica y las terapias consiguientes para los tratamientos vayan por delante.

Otro tipo de patologías asociadas habitualmente al envejecimiento, menos, permítasenos el término, llamativas son las relacionadas con la degeneración ósea, como la osteoporosis. Se estima que, a nivel mundial, una de cada tres mujeres y uno de cada cinco hombres mayores de 50 años van a sufrir una fractura ósea osteoporótica. Además, aunque la mayoría de las fracturas sanarán sin complicaciones con el tratamiento apropiado, hay otros casos de deterioro de la regeneración ósea, por ejemplo, traumatismos importantes con infecciones secundarios a accidentes automovilísticos.

El hueso es el tejido más trasplantado después de la sangre por lo que la demanda de hueso para transplante solo aumentará en el futuro. Por ello, aparte de procurar regenerar el hueso existente se hace necesario tratar esas nuevas necesidades de tejido óseo.

El proyecto cmRNAbone, liderado por el AO Research Institute Davos (Suiza) pretende desarrollar una nueva terapia génica que mejore la vida de las personas con grandes lesiones traumáticas o enfermedades degenerativas óseas como la osteoporosis.

El enfoque propuesto es una combinación única de investigación genética, nano y biotecnología avanzadas, e impresión 3D: utilizando descubrimientos científicos recientes relacionados con agentes terapéuticos de ARN, el consorcio tiene como objetivo desarrollar ARN modificado químicamente (cmRNA, por sus siglas en inglés) que codifique proteínas específicas dirigidas a la neurogénesis, la vasculogénesis y la osteogénesis – tres procesos principales que influyen en la progresión de la curación. Los conjuntos de ARN producidos se combinarán con vehículos de entrega (vectores) no virales para que el suministro de ARN se incorpore en una formulación de tinta de biomaterial. El uso de una impresora 3D específicamente diseñada para el implante ayudará a demostrar las capacidades de regeneración ósea en la práctica.

Los nuevos hallazgos se aplicarán en dos estudios preclínicos simultáneos con el fin de demostrar la validez y relevancia clínica de la terapéutica diseñada en defectos óseos osteoporóticos y de tamaño crítico. Respaldado por una junta asesora clínica y científica, el consorcio dirigido por pymes garantizará una traducción fácil y rápida a la clínica una vez finalizado el proyecto. A largo plazo, los descubrimientos podrían constituir no solo un enfoque regenerativo para fracturas frágiles y defectos óseos grandes en población joven y de edad avanzada, sino también para otras enfermedades importantes que afectan a millones de pacientes.

La vasca CIDETEC Nanomedicine será la encargada de desarrollar precisamente los vectores cmRNA basados en polisacáridos, no virales, adaptados a la matriz desarrollada con el objetivo de conseguir la regeneración ósea.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Actúa localmente: huesos a partir de ARN modificado e impresoras 3D se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Actúa localmente: robots inteligentes autoadaptativos para la producción industrial
  2. Actúa localmente: impresión 3D de piezas aeronáuticas de titanio
  3. Actúa localmente: convertidores de potencia basados en carburo de silicio
Categorías: Zientzia

¿De dónde viene el cáncer y por qué no ha desaparecido con la evolución?

Lun, 2021/04/05 - 11:59

Audrey Arnal, Benjamin Roche, y Frédéric Thomas

El demonio de Tasmania es víctima de una forma particular de cáncer, transmisible de un individuo a otro. Fuente: Pixabay / pen_ash, FAL

 

El cáncer plantea multitud de cuestiones a los biólogos, gran parte de ellas todavía sin terminar de resolver. ¿Cómo se explican los orígenes de esta enfermedad? ¿Por qué es tan difícil de curar? ¿Por qué persiste la vulnerabilidad al cáncer en la mayoría de los organismos pluricelulares?

Los enfoques basados en la explicación de los mecanismos de esta enfermedad y las investigaciones clínicas no son suficientes frente a estos interrogantes. Debemos observar el cáncer desde una nueva perspectiva, adoptando una visión evolutiva. En otras palabras, debemos mirar el cáncer a través de los ojos de Charles Darwin, padre de la teoría de la evolución.

Desde hace unos años, el esfuerzo conjunto de biólogos evolutivos y oncólogos está fomentando reflexiones que se traducen en avances transversales beneficiosos para ambas disciplinas, a la vez que cambian nuestra comprensión de la enfermedad.

Cómo la evolución de los organismos pluricelulares prepara el terreno para el cáncer

El cáncer afecta al conjunto del reino animal pluricelular. La razón es que se trata de una enfermedad ancestral relacionada con la aparición de los metazoos (animales compuestos de varias células, en oposición a los protozoos que están constituidos por una sola célula), hace más de quinientos millones de años.

La aparición de tales organismos complejos requirió el desarrollo de altos niveles de cooperación entre la multitud de células que los componen. En efecto, esa cooperación se sostiene por comportamientos complementarios y altruistas, en particular por la apoptosis o suicidio celular (por el cual una célula activa su autodestrucción al recibir una cierta señal) y por la renuncia a la reproducción directa por parte de toda célula que no sea una célula sexual. Es decir, la evolución hacia entes pluricelulares estables se produjo por la selección de adaptaciones que, por un lado, facilitaban el funcionamiento colectivo y, por otro lado, reprimían los reflejos unicelulares ancestrales.

El cáncer representa una ruptura de esa cooperación pluricelular, seguida de la adquisición de adaptaciones que permiten que esas células «renegadas» se perfeccionen en su propio modo de vida. Dicho de otra forma, las células malignas comienzan a «hacer trampas». Pueden hacerlo pues han sufrido mutaciones genéticas (modificaciones de la secuencia de genes) o epigenéticas (modificaciones que cambian la expresión de los genes y que, además de transmisibles, son reversibles, al contrario de las mutaciones genéticas), o incluso las dos, lo que les confiere un valor selectivo más alto en comparación con las células de comportamiento cooperativo. Puede consistir, por ejemplo, en ventajas de crecimiento, de multiplicación, etc. De la misma forma, es imperativo que las células portadoras de esas modificaciones se sitúen en un microentorno favorable a su proliferación.

Si estas «rebeliones celulares» no son reprimidas de manera correcta por los sistemas de defensas del organismo (como el sistema inmunitario), la abundancia de células cancerosas puede aumentar localmente. Consecuencias: los recursos se agotan y estas células pueden iniciar entonces comportamientos individuales o colectivos de dispersión y de colonización hacia nuevos órganos, las tristemente conocidas metástasis responsables de la mayoría de los decesos debidos al cáncer.

Células del sistema inmunitario (linfocitos T citotóxicos) rodean una célula cancerosa. Fuente: Alex Ritter, Jennifer Lippincott Schwartz y Gillian Griffiths, National Institutes of Health

De ese modo, en unos meses o años, una sola célula cancerosa puede generar un «ecosistema» complejo y estructurado, el tumor sólido (comparable a un órgano funcional), así como metástasis más o menos diseminadas por el organismo.

Un aspecto intrigante de esta enfermedad reside en el número significativo de semejanzas entre los atributos de las células cancerosas provenientes de diferentes órganos, individuos e incluso especies, lo que sugiere que los procesos que tienen lugar en cada caso son similares. Sin embargo, cada cáncer evoluciona como una nueva entidad, ya que, aparte de los cánceres transmisibles antes mencionados, los tumores desaparecen siempre junto a sus huéspedes, sin transmitir sus innovaciones genéticas ni fenotípicas.

Entonces, ¿cómo se explican esas semejanzas?

Persistencia del cáncer a lo largo del tiempo evolutivo

Desde un punto de vista evolutivo, hay dos hipótesis que pueden explicar la aparición del cáncer y la similitud de sus atributos.

La teoría del atavismo explica el cáncer como un retorno a capacidades anteriores de las células, entre las que se encuentra la liberación de un programa de supervivencia excelentemente conservado, siempre presente en toda célula eucariota y, por tanto, en todo organismo pluricelular. Se cree que la selección de este programa ancestral tuvo lugar durante el período precámbrico, que comenzó hace 4550 millones de años y terminó hace 540 millones de años. Durante este período, que vio surgir la vida sobre nuestro planeta, las condiciones medioambientales eran muy distintas de las actuales y, a menudo, desfavorables. Las fuerzas selectivas que actuaban sobre los organismos unicelulares favorecieron las adaptaciones para la proliferación celular.

Algunas de esas adaptaciones, seleccionadas a lo largo de la vida unicelular, quedaron presentes para siempre, más o menos escondidas en nuestros genomas. Cuando su expresión escapa de los mecanismos de control, comienza una lucha entre los rasgos ancestrales unicelulares y los rasgos pluricelulares actuales y es entonces cuando puede aparecer un cáncer. Es más, esta hipótesis podría explicar también por qué las células cancerosas se adaptan tan bien a los entornos ácidos y pobres en oxígeno (anóxicos), pues estas condiciones eran habituales en el Precámbrico.

La segunda hipótesis implica un proceso de selección somático –las células somáticas agrupan la totalidad de las células de un organismo a excepción de las células sexuales– que conduce a una evolución convergente, es decir, a la aparición de rasgos análogos. Esta hipótesis sugiere que la aparición de los rasgos celulares que caracterizan las células «tramposas» se somete a una fuerte selección cada vez que aparece un nuevo tumor, con independencia de cuáles sean las causas inmediatas de dichos rasgos. Estos procesos de selección somática, al tener lugar en entornos regidos en gran medida por los mismos condicionantes ecológicos (como los que reinan en el interior de los organismos pluricelulares), darían lugar a una evolución convergente.

Eso podría explicar las similitudes que observamos a través de la diversidad del cáncer. No olvidemos que solo vemos los cánceres que consiguen desarrollarse, pero no sabemos cuántos «candidatos» fracasan al no conseguir adquirir las adaptaciones necesarias en el momento adecuado.

Estas dos hipótesis no son excluyentes: la reaparición de un programa ancestral puede estar seguida de una selección somática que culmine en una evolución convergente.

Cualquiera que sea la razón del origen del cáncer, hay una pregunta que sigue sin respuesta: si esta enfermedad suele causar la muerte del huésped, ¿por qué no ha sido más eficaz la selección natural en conseguir que los organismos pluricelulares sean completamente resistentes al cáncer?

Los animales grandes no tienen más cáncer

Los mecanismos de supresión del cáncer son numerosos y complejos. Cada división celular puede provocar mutaciones somáticas que alteren los mecanismos genéticos que controlan la proliferación celular, la reparación del ADN o la apoptosis, perturbando así el control del proceso de formación del cáncer (carcinogénesis).

Si cada división celular conlleva una probabilidad dada de que se produzca una mutación cancerígena, entonces, el riesgo de desarrollar un cáncer debería ser función del número de divisiones celulares a lo largo de la vida de un organismo. Sin embargo, las especies de gran tamaño y más longevas no tienen más cáncer que aquellas pequeñas que viven menos tiempo.

En las poblaciones naturales animales, la frecuencia del cáncer varía, en general, entre un 0% y un 40 % para todas las especies estudiadas y no existe relación con la masa corporal. En los elefantes y en los ratones se observan niveles de prevalencia del cáncer bastante similares, a pesar de que los elefantes desarrollen muchas más divisiones celulares a lo largo de su vida que los ratones. Este fenómeno se conoce como «la paradoja de Peto».

La explicación de esta paradoja reside en el hecho de que las fuerzas evolutivas han seleccionado mecanismos de defensa más eficaces en los animales grandes que en los pequeños, lo que permite reducir el lastre ligado al cáncer por el aumento de tamaño. Por ejemplo, los elefantes tienen veinte copias del gen supresor de tumores TP53, mientras que los humanos solo disponemos de dos.

photo de rat-taupe nuLa rata topo desnuda no teme al cáncer, que solo le afecta de forma anecdótica. Fuente: Meghan Murphy, Smithsonian’s National Zoo, CC BY-ND

Encontramos excepciones notables a esta tendencia general, como es el caso de especies de pequeño tamaño con una longevidad fuera de lo normal. Estas especies tampoco desarrollan apenas cáncer. Un buen ejemplo es el de la rata topo desnuda (Heterocephalus glaber), una especie cuyos individuos viven mucho tiempo (especie longeva) y no desarrollan tumores espontáneos, con la excepción de algunos casos de cáncer detectados de forma anecdótica.

Una enfermedad que se manifiesta de forma tardía

Recordemos también que la eficacia de las defensas contra el cáncer experimenta una disminución una vez que los organismos han llevado a cabo lo esencial de su reproducción, ya que las presiones evolutivas son menores en esta etapa de la vida. Esta pérdida de eficacia, junto con la acumulación de mutaciones a lo largo del tiempo, explica que la mayor parte de los cánceres (mama, próstata, pulmón, páncreas…) aparezcan en la segunda mitad de la vida.

Una de las implicaciones evolutivas capitales es que si, desde una perspectiva darwiniana, el cáncer no es una preocupación relevante cuando se manifiesta tras la fase reproductiva, eso significa también que nuestras defensas se habrán optimizado por selección natural no para erradicar de forma sistemática los procesos oncogénicos sino para controlarlos mientras tengamos capacidad reproductora…

Al final, esas defensas low cost, cuyo objetivo es resistir frente a los tumores, se revelan más ventajosas para salvaguardar el éxito reproductor que como estrategias de erradicación sistemática, que serían sin duda mucho más costosas. El sistema inmunitario, por ejemplo, no trabaja a cambio de nada… En general, los seres vivos se rigen por soluciones de compromiso, trade-offs en inglés, que hacen que toda inversión en una función necesite de una serie de recursos y energía que ya no estarán disponibles para otras funciones. Nuestras defensas contra las enfermedades, el cáncer incluido, no quedan fuera de esta regla de funcionamiento.

Por desgracia, esas defensas low cost contra el cáncer se convierten al final en bombas con retardo… En otras palabras, ¡la lógica darwiniana no nos lleva siempre a resultados que casen con nuestras expectativas como sociedad en términos de salud!

Aunque la mayor parte de las mutaciones cancerígenas se producen en células somáticas a lo largo de la vida, hay casos raros de cáncer cuya causa se encuentra en mutaciones hereditarias en la línea germinal, la que produce las células sexuales. Esas mutaciones congénitas, a veces, son más frecuentesde lo que se esperaríadel equilibrio mutación-selección.

Esta paradoja se puede explicar por diversos procesos evolutivos. Por ejemplo, se ha sugerido que, probablemente, la selección natural no actuará sobre esas mutaciones si, una vez más, sus efectos negativos sobre la salud solo se manifiestan cuando haya terminado el período reproductivo.

Por otro lado, se podría recurrir a la teoría de la pleiotropía antagonista. Esta teoría estipula que ciertos genes tienen efectos contrarios sobre la probabilidad de supervivencia / reproducción según la edad considerada: sus efectos serían positivos al comienzo de la vida y negativos en el resto. Si el efecto positivo inicial es notable, es posible que la selección retenga esa variante genética aunque cause una enfermedad mortal más tarde.

Por ejemplo, las mujeres que presentan una mutación de los genes BRCA1 y BRCA2 tienen un riesgo significativamente más alto de desarrollar cánceres de mama o de ovario, pero esas mutaciones parecen estar relacionadas con una mayor fertilidad.

Implicaciones en materia de tratamientos

El cáncer, auténtico lastre de las poblaciones humanas, es ante todo un fenómeno regido por procesos evolutivos, desde su origen en la historia de la vida hasta su desarrollo en tiempo real en una persona enferma. La separación tradicional entre oncología y biología evolutiva, por tanto, debe desaparecer, pues limita nuestra comprensión de la complejidad de los procesos que culminan en la manifestación de la enfermedad.

Esta nueva perspectiva del cáncer podría resultar útil para el desarrollo de soluciones terapéuticas innovadoras que limiten los problemas asociados a las estrategias de tratamiento disponibles en la actualidad. Estas terapias de altas dosis, que buscan matar el máximo de células malignas, acaban provocando a menudo la proliferación de células resistentes. A la inversa, la terapia adaptativa, profundamente enraizada en la biología evolutiva, podría constituir un enfoque alternativo.

Esta estrategia consiste en disminuir la presión que conllevan las terapias de altas dosis con el fin de eliminar solo una parte de las células cancerosas sensibles. Se trata de mantener un nivel suficiente de competición entre las células cancerosas sensibles y las células cancerosas resistentes, con el fin de evitar o de limitar la proliferación sin restricciones de las resistentes.

Una problemática que no se limita al ser humano

Hasta hace poco, rara vez la oncología había adoptado los conceptos de la biología evolutiva para mejorar la comprensión de los procesos malignos. De igual forma, los ambientalistas y los biólogos evolutivos apenas se han interesado en la existencia de estos fenómenos en sus investigaciones sobre los seres vivos. Pero las cosas cambian y la consideración del cáncer –o, más bien, de los procesos oncogénicos en su conjunto– en el seno de la fauna salvaje suscita un entusiasmo creciente en el seno de la comunidad de los ambientalistas y de los biólogos evolutivos.

En efecto, a día de hoy, el cáncer se muestra con claridad como un modelo biológico pertinente para estudiar la evolución de los seres vivos, así como un fenómeno biológico de importancia para comprender diversas facetas de la ecología de las especies animales y sus consecuencias sobre el funcionamiento de los ecosistemas.

Aunque no siempre evolucionen hacia formas invasivas o metastásicas, los procesos tumorales son omnipresentes en los metazoos y hay estudios teóricos que sugieren que, probablemente, en estos últimos tengan influencia en variables fundamentales en ecología, como son los rasgos de historia de la vida, las aptitudes competitivas, la vulnerabilidad a los parásitos y a los depredadores, o incluso la capacidad de dispersarse. Esos efectos provienen tanto de consecuencias patológicas de los tumores como de los costes asociados al funcionamiento de los mecanismos de defensa de los huéspedes.

La comprensión de las consecuencias ecológicas y evolutivas de las interacciones huésped-tumor se ha vuelto también un tema de investigación de referencia en ecología y en biología evolutiva en estos últimos años.

Estos cuestionamientos científicos son todavía más pertinentes cuando la práctica totalidad de los ecosistemas del planeta, sobre todo los medios acuáticos, está contaminada hoy en día por sustancias de origen antrópico y, a menudo, mutágenicas. Por lo tanto, es primordial mejorar la comprensión de las interacciones huésped-tumor y sus efectos en cascada dentro de las comunidades, para así predecir y anticipar las consecuencias de las actividades humanas en el funcionamiento de los ecosistemas y en el mantenimiento de la biodiversidad.

Sobre los autores: Audrey Arnal es investigadora postdoctoral y Benjamin Roche director de investigación en el Institut de recherche pour le développement (IRD) ; Frédéric Thomas es director de investigación en el Centre national de la recherche scientifique (CNRS)

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo ¿De dónde viene el cáncer y por qué no ha desaparecido con la evolución? se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. La senescencia celular: el gran desafío para entender y tratar el cáncer
  2. Los supermicrobios amenazan con ser más letales que el cáncer
  3. La evolución nos dice que es probable que seamos la única vida inteligente del universo
Categorías: Zientzia

La extinción de la megafauna chilena dejó a este árbol sin ayuda para dispersar sus semillas

Sáb, 2021/04/03 - 11:59

Diego Muñoz-Concha y Andrea Loayza

El gonfoterio (Stegomastodon platensis) fue parte de la megafauna que se extinguió en Chile a fines del Pleistoceno. Posiblemente dispersaba las semillas de queule. Ilustración: Fernán Muñoz

 

Como en una novela policial en la cual los detectives deben resolver un misterio y hallar un culpable, en las ciencias naturales los científicos también buscamos pistas, presentes y pasadas, que nos ayuden a entender lo que se observa (y lo que no) en un ecosistema. Uno de los grandes misterios ecológicos en la actualidad es la presencia de especies de plantas que producen frutos muy grandes en lugares donde ya no existen animales de gran tamaño que los consuman y puedan dispersar sus semillas. Para las plantas, la dispersión de la semilla es un proceso fundamental que permite a las especies subsistir en el tiempo y colonizar nuevos lugares.

Los frutos que son atractivos para los animales son comestibles y tienen tejidos carnosos muy nutritivos. Suelen ser de un tamaño proporcional a los principales animales que los consumen. Por eso, las plantas con frutos y semillas grandes son dispersadas por animales de gran tamaño (megafauna), ya que son los únicos capaces de tragar los frutos.

En algunos ecosistemas actuales, aún ante la presencia de plantas con frutos aparentemente adaptados para el consumo por grandes animales, no es posible encontrar fauna nativa moderna de gran tamaño que los consuma y disperse sus semillas. Estos frutos megafáunicos, observados hace décadas en ecosistemas centroamericanos, son considerados un anacronismo, y su presencia se atribuye a la desaparición de grandes bestias hace unos 10 000 años, hacia el final de la última época glacial, a fines del Pleistoceno.

Numerosas especies de plantas tienen frutos de carácter megafáunico en Sudamérica. En un estudio reciente fijamos la mirada en una escena ecológica donde participa un árbol en peligro de extinción que solo crece en una reducida extensión geográfica de la zona costera en el centro-sur de Chile.

El fruto de este árbol, llamado queule (Gomortega keule), es comestible y de gran tamaño (20 a 40 gramos). Tiene una semilla protegida por una durísima cubierta leñosa. En la época de fructificación, en otoño (abril y mayo en su zona de origen) los frutos caen al suelo y allí se pudren sin que haya animales nativos que los consuman en cantidades importantes, y menos que dispersen las semillas. Sin embargo, en Chile existen evidencias fósiles de la ocurrencia de megafauna en el Pleistoceno, como gonfoterios, équidos y cérvidos.

Lamentablemente, parece casi imposible encontrar un estómago fósil de estos animales con semillas de queule en su interior. Debemos buscar entonces otras evidencias que apunten al carácter megafáunico del fruto de queule.

Frutos de queule en el suelo

Una observación importante corresponde al consumo de frutos de queule por parte de animales modernos de gran tamaño. Como parte de nuestro estudio, se dispusieron frutos maduros de queule en las jaulas de animales de un zoológico y también para animales domésticos en granjas locales. Algunos animales no se acercaron a los frutos, otros comieron la pulpa pero descartaron el cuesco, y algunos consumieron el fruto completo.

Esta evidencia permite asegurar que los frutos de queule son atractivos para animales de gran tamaño y que, al menos algunos de esos animales, tragan la semilla y por lo tanto pueden transportarla. Pero además es relevante conocer si la semilla mantiene su capacidad de germinar luego de pasar por la boca o el tracto digestivo del animal. Para esto realizamos experimentos de germinación con los cuescos recuperados, donde observamos germinación en todos los casos.

Detalle de los frutos de queule

Otra observación importante, ahora en el ambiente natural del árbol, fue la presencia de cuescos de queule en estiércol de cerdos y vacas. En algunas zonas donde persiste la especie, los habitantes locales señalan que el ganado se alimenta de los frutos de queule, lo que confirma esta observación y apoya el carácter megafáunico del fruto.

Sin embargo, puesto que no hay plántulas de queule en zonas con ganado, estos animales domésticos no están desarrollando hoy día el proceso de dispersión de semillas en forma efectiva para esta especie. Entre los animales nativos, donde existe muy poca información, solo un pequeño ciervo ha sido visto mordisqueando los frutos, pero debido a su reducido tamaño corporal (menos de 10 kilogramos), no es probable que trague la semilla.

Cuescos de queule

¿Debemos ayudar al queule?

Aunque parece bastante claro que el fruto megafáunico de queule representa un anacronismo, existen aún muchas interrogantes que futuras investigaciones deberán abordar para avanzar de forma efectiva en la conservación de esta especie de árbol. La escasa sobrevivencia de sus plántulas, el posible rol de dispersión de semillas por animales como roedores y por el ganado, y sobre todo los múltiples efectos de la alteración que sobre el bosque original han producido la agricultura y la silvicultura son algunas de las preguntas que deben ser respondidas.

El ciervo más pequeño del mundo, el pudú (Pudu puda), es el único animal de ciertas proporciones que fue observado comiendo frutos de queule, aunque no es probable que pueda tragar y dispersar la semilla. Foto: Carlos Reyes y Alexis Villa, CONAF Maule.

La intervención con cerdos o caballos, que podrían dispersar semillas de queule, puede parecer atractiva, pero la complejidad del sistema hace difícil prever los efectos negativos que en el caso del cerdo ya se han observado en otros ecosistemas neotropicales.

Antes de pensar en la introducción de megafauna para restablecer procesos ecológicos importantes (rewilding) como la dispersión de semillas, hay que considerar experiencias recientes muy preocupantes por sus consecuencias sociales y ecológicas.

El caso de queule también puede despertar reflexiones éticas y filosóficas, pues se trata de una especie con problemas de dispersión de semillas muy posiblemente desde tiempos anteriores a los cambios planetarios que vivimos hoy, situación compartida por varias otras especies de plantas.The Conversation

Sobre los autores: Diego Muñoz-Concha es profesor e investigador en botánica de la Universidad Católica del Maule y Andrea Loayza es profesora asociada de la Universidad de La Serena

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo La extinción de la megafauna chilena dejó a este árbol sin ayuda para dispersar sus semillas se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Árbol sagrado, árbol maldito
  2. Natacha Aguilar: “Necesitamos que el mar esté en equilibrio para que el planeta también lo esté”
  3. No todo ha sido malo este año: la ciencia nos dejó algunas buenas noticias
Categorías: Zientzia

María Jesús del Río – Naukas Bilbao 2019: El día que el MWh alcanzó los 10.000€

Sáb, 2021/04/03 - 11:59
Foto: Charlotte Venema / Unsplash

Pasó a principios de 2021 y se formó una gran polvareda que quedó en nada. Exactamente igual que en 2019.  María Jesús del Río desentraña en esta charla el misterio de cómo se forma el precio de la electricidad en España. Un adelanto: como todos los precios es una cuestión de oferta y demanda y, como todos los precios, es una cuestión de las distorsiones de un mercado intervenido.

María Jesús del Río es ingeniera industrial con especialidad en electrotecnia. Atesora más de 15 años de experiencia en empresas de energías renovables, donde he desarrollado principalmente tareas de análisis de producción y seguimiento de mercados.



Edición realizada por César Tomé López a partir de materiales suministrados por eitb.eus

El artículo María Jesús del Río – Naukas Bilbao 2019: El día que el MWh alcanzó los 10.000€ se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Ana María Zubiaga – Naukas Pro 2019: La difícil búsqueda de terapias contra el cáncer
  2. Naukas Bilbao 2017 – María José Calderón y Belén Valenzuela: Esta física es la leche
  3. Naukas Bilbao 2017 – Aberrón entrevista a María Martinón y a José Mª Bermúdez de Castro
Categorías: Zientzia

El riesgo de división social entre vacunados y no vacunados

Vie, 2021/04/02 - 11:59

Ramón Ortega Lozano y Aníbal Monasterio Astobiza

Fuente: freepik.es

Muchos autores (Walton, Rudinow, Hartog) han analizado la falacia de la pendiente resbaladiza como un argumento que propone que cuando se da un primer paso hacia una dirección, una serie de consecuencias inextricables conducirán, en última instancia, a un resultado desastroso. Una falacia es un argumento imperfecto, es decir, con deficiencias formales que lo convierten en irracional. En el caso de los temas que aborda la pendiente resbaladiza, los resultados siempre son negativos. Por eso suelen ser un buen caldo de cultivo para la ciencia ficción, en especial para las distopías.

Sin embargo, pese a basarse en argumentos imperfectos, la pendiente resbaladiza no impide hacer algunas críticas razonables sobre las consecuencias que podrían derivarse de intervenciones en exceso arriesgadas. María Teresa López la Vieja analiza en su libro La pendiente resbaladiza: la práctica de la argumentación moral que un uso conservador del argumento justificará el rechazo de lo nuevo, por el temor a que nos lleve hacia el desastre. Por el contrario, un uso crítico invita a mantener la prudencia ante prácticas de resultado incierto.

La vacuna y la pendiente resbaladiza

Cuando hizo acto de aparición la vacuna contra el virus SARS-CoV-2, no dejaron de pronunciarse argumentos que advertían las posibles consecuencias negativas sobre su impacto social. Muchos de ellos correspondían a la clasificación de pendiente resbaladiza, pues renunciando a la lógica formal, prevenían de un posible desastre. Uno de los principales problemas que se planteó era si la vacunación debía ser obligatoria. O si debía serlo al menos para algunos colectivos.

A partir de aquí se empezó a especular sobre la división social que podría acarrear el estar vacunado frente a los que no lo estuvieran. De hecho, una de las primeros ideas que se barajó para mostrar los peligros de esa posible desigualdad era ejemplificada con la idea de ciudadanos que podían viajar, por estar vacunados, y ciudadanos que no, por no estarlo.

¿Es posible que una falacia termine convirtiéndose en una realidad? En la actualidad, el pasaporte de vacunación parece serlo y se materializará en breve. Bajo la lógica argumentativa de la pendiente resbaladiza, la posibilidad del pasaporte de vacunación es una mala idea y representa una medida discriminatoria e iliberal, porque nos conduce en una dirección con resultados inciertos.

Pensemos en tres grupos poblacionales que pueden no vacunarse: a) aquellas personas que no pueden, porque tienen una contraindicación médica (edad, condiciones de salud y/u otros factores); b) aquellas personas que no quieren (antivacunas o por simple razón de autonomía); y c) aquellas personas que no tienen acceso a la vacuna. ¿Estas personas tendrían restringidas sus libertades de movilidad por no tener un pasaporte de vacunación? ¿Qué hacemos con estos grupos? ¿Es posible pensar en un mercado negro de pasaportes de vacunación falsificados?

Como puede verse, a veces las metáforas catastróficas que enuncian las pendientes resbaladizas pueden enunciar verdades, pese a que su argumento sea imperfecto (irracional). Incluso cuando una medida como el pasaporte de vacunación parece insuficiente para prevenir los riesgos de contagio, pues, como analizan Beriain y Rueda, ni siquiera está probado que las vacunas produzcan una inmunidad esterilizante. O lo que es lo mismo, no se ha demostrado que los vacunados no puedan contagiar o transmitir el virus.

El riesgo como fundamento de la pendiente

El concepto de riesgo es actualmente entendido como la probabilidad que existe de que tenga lugar un acontecimiento con un impacto negativo o de que un factor aumente la probabilidad de que esto ocurra. En el ámbito sanitario, el factor de riesgo son aquellas condiciones que dentro de una cadena de acontecimientos relacionados sirven para identificar causas próximas al desarrollo de una enfermedad.

Lo interesante es que esta idea de riesgo supone siempre un control social. La sociedad “saludable” tiene un comportamiento predecible y deseable, y lo que se aparta se convierte en una conducta desviada. En otras palabras, existen comportamientos que deben ser controlados para evitar riesgos.

Debido a la actual pandemia podemos ver múltiples ejemplos. Basta mencionar el uso de la mascarilla. Cuando se habla de control social, no se está haciendo referencia a unas leyes sancionadoras por no usar la mascarilla, sino a que es la misma sociedad la que vigila y controla su uso. ¿Quién vería bien, hoy en día, que una persona estornudara o tosiera sin mascarilla? Incluso aunque estuviera haciendo deporte al aire libre, su comportamiento sería censurado. O, por lo menos, no se vería con buenos ojos.

Por tanto, salud, riesgo y control social son conceptos muy unidos. Pero es importante remarcar que el peso de ese control no necesariamente proviene de un poder estatal, sino de una narrativa. Desde la antropología de la salud se ha analizado que la narración en torno al riesgo puede tener como consecuencia miedo, ansiedad y rabia. Ejemplos que también hemos visto durante la pandemia como los censurables ataques a profesionales de la salud por parte de sus vecinos.

Nuevas pendientes de vacunados y no vacunados

Dentro de la narrativa de riesgo podría ser aceptable la implementación de estos pasaportes. Como se ha mencionado arriba, la pendiente resbaladiza puede ayudarnos a generar un pensamiento crítico, para analizar con cautela los posibles desenlaces de una acción. ¿Deberíamos aventurarnos, entonces, a plantear otras pendientes a partir del pasaporte de vacunación?

Parece necesario enunciar algunas, aunque su finalidad no sea otra que la cautela, es decir, la de proponer límites que resultaría inaceptable sobrepasar frente a esa posible división social entre vacunados y no vacunados. ¿Podría comenzar a usarse un pasaporte parecido para entrar a ciertos lugares de ocio (discotecas, bares, restaurantes, cines)? ¿Podría solicitar un empleador a un candidato, previa firma de un contrato de cesión de datos privados, que muestre su certificado de inmunidad para ser contratado?

Si el virus SARS-CoV-2 se convierte en una infección respiratoria endémica, lo cual es muy probable, ¿seguirán siendo útiles los pasaportes de vacunación? ¿Los pasaportes de vacunación estarán basados en una vacuna administrada o en ciertos niveles de anticuerpos en sangre? Estas y otras muchas cuestiones se plantean de seguir la argumentación de la pendiente resbaladiza en su uso crítico-prudencial y merecen ser examinadas si no queremos acabar con una división social entre vacunados y no vacunados.The Conversation

Sobre los autores: Ramón Ortega Lozano es profesor de antropología de la salud y comunicación humana en la Facultad de Ciencias de la Salud San Rafael-Nebrija, Universidad Nebrija y Aníbal Monasterio Astobiza es investigador posdoctoral de la Universidad del País Vasco / Euskal Herriko Unibertsitatea

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo El riesgo de división social entre vacunados y no vacunados se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. El cannabis rompe el equilibrio metabólico entre neuronas y astrocitos alterando el comportamiento social
  2. La secuencia de estructuras intermedias durante la división de la membrana celular
  3. ADN, microbiota y riesgo de celiaquía
Categorías: Zientzia

El proyectil del camaleón

Jue, 2021/04/01 - 11:59
Chamaeleo zeylanicus. Ilustración: María Lezana

Tendemos a pensar en la endotermia como la condición ideal de los animales, esa que permite la homeotermia y, por lo tanto, la llave para poder llevar una vida independiente (hasta cierto punto, entiéndase) del calor o, más frecuentemente, del frío que pueda hacer ahí fuera.

Efectivamente, el poder mantener constante la temperatura corporal tiene la ventaja de que permite que la actividad no se vea apenas condicionada por el entorno térmico. Pero también tiene una gran desventaja: sale cara. A los efectos, es como tener encendida de forma permanente una estufita interna. Quizás por esa razón son tan pocos los grupos animales cuyos miembros regulan su temperatura corporal para mantenerla constante (homeotermos). Así pues, no cabe pensar en la endotermia como “condición ideal”. De hecho, la mayoría de especies animales son poiquilotermos; esto es, permiten que su temperatura interna varíe en función de los cambios ambientales. Y a la inmensa mayoría de ellas no les va nada mal.

El efecto que ejerce la temperatura sobre la actividad animal puede ser muy importante. La velocidad de las reacciones químicas depende de la temperatura, por lo que todas las funciones basadas en reacciones químicas también dependen de la temperatura; es lo que ocurre con la contracción muscular, o con la absorción intestinal de nutrientes, por ejemplo. Por ello, las bajas temperaturas pueden limitar la capacidad de movimiento de los animales poiquilotermos, algo que puede tener consecuencias de gran trascendencia. Por ejemplo, para poder atrapar una presa hay que realizar algún tipo de movimiento, y lo mismo cabe decir cuando de lo que se trata es de huir de un depredador.

Se trata de una cuestión de tan importantes consecuencias potenciales, que muchos animales poiquilotermos han desarrollado eficaces mecanismos para neutralizar, en cierta medida al menos, la dependencia térmica de la actividad. Esto es, han conseguido que el metabolismo, así como sus niveles generales de actividad dependan de la temperatura en un grado inferior al que cabría esperar si el efecto térmico consistiese únicamente en un efecto cinético directo sobre las reacciones químicas implicadas. Gracias a esa capacidad, el nicho ecológico de las especies puede ser algo más amplio de lo que sin ella hubiera sido, y esto es más importante en los animales terrestres, porque en los medios acuáticos, y sobre todo en el mar, los cambios térmicos son de menor amplitud y, casi siempre, mucho más graduales.

Aparte de esa capacidad para mitigar la dependencia térmica que tienen numerosos animales, también hay especies que han desarrollado otras tácticas para compensar los efectos de esa “tiranía” térmica. Aquí veremos una de esas tácticas, un truco, -podría decirse-, que han desarrollado los camaleones.

Los camaleones, como todos los reptiles vivientes, son poiquilotermos, pero tienen un nicho ecológico muy amplio, máxime si los comparamos con los lagartos, a los que, por otra parte, tanto se asemejan. Los camaleones son depredadores de la modalidad “sit-and-wait”. Son de movimientos lentos, y extraordinariamente crípticos, porque se camuflan muy bien; gracias a esa capacidad sus presas potenciales no se percatan de su presencia. Y utilizan, además, un procedimiento de caza muy especial: la proyección balística de la lengua. Seguramente todos tenemos en mente imágenes de alguna proyección de la lengua de un camaleón, pues son imágenes muy habituales en documentales de televisión. La proyectan a gran velocidad; aunque su longitud puede llegar a duplicar la del cuerpo, pueden extender la lengua en 0’07 s (a una aceleración de 400 m s-2). En la lengua tienen una sustancia adhesiva y allí quedan adheridos los insectos que atrapa. Ese es, en pocas palabras, su método de caza.

Como he señalado antes, los camaleones tienen un nicho ecológico muy amplio, ya que son capaces de cazar en un intervalo amplio de temperaturas. Esa capacidad se debe a la naturaleza del movimiento de la lengua. Porque no es un movimiento muscular, sino que se debe a la extensión de los componentes elásticos de colágeno. Al parecer, la actividad muscular tiene el cometido de recoger, -podría decirse que el de enrollar y tensar-, la lengua; cuando se encuentra recogida, los componentes elásticos se encuentran contraídos y al proyectarse hacia una presa, se libera la tensión que se había generado al recogerse. En cierto modo, se asemeja al funcionamiento de una ballesta. Recoger la lengua es similar a armar la ballesta; en ambos casos hay que hacer un trabajo. Y luego, una vez que está armada, solo hay que soltarla cuando se desea. La lengua funciona, a todos los efectos, como un proyectil.

Gracias al uso de ese mecanismo, la proyección de la lengua es muy poco dependiente de la temperatura: un descenso de 10 ºC solo provoca una reducción de entre un 10% y un 20% en la velocidad y potencia con que se proyecta la lengua, cuando si ese movimiento se hubiera basado en la contracción muscular, hubiera experimentado una reducción superior al 40% para ese mismo descenso térmico. Esto es, las temperaturas bajas no reducen en exceso la velocidad de proyección, pero sí la del posterior recogimiento. Claro que para cazar insectos, la clave no está en enrollar la lengua rápidamente, sino en lanzarla después a gran velocidad.

El sistema de proyección de la lengua de los camaleones es un curioso y útil mecanismo. Gracias a él pueden vivir en zonas de temperaturas muy diversas y, además, pueden cazar desde muy temprano en la mañana en zonas frías. Y eso es algo que, por efecto del frío, les está vedado a otros reptiles. Sabíamos que su capacidad de camuflaje constituye una valiosa adaptación. Pero el mecanismo descrito en este artículo también es muy valioso, por la ventaja competitiva que comporta.

Fuente: Christopher V. Anderson & Stephen M. Deban (2010): “Balistic tongue projection in chamaleons maintains high performance at low temperature.” PNAS 107: 5495-5499.

 

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

El artículo El proyectil del camaleón se ha escrito en Cuaderno de Cultura Científica.

Entradas relacionadas:
  1. Un camaleón plasmónico que cambia de color en función del entorno
  2. A mayor tamaño menor intensidad metabólica
  3. Relaciones hídricas y salinas de los animales
Categorías: Zientzia

Páginas